3,395 research outputs found

    Pooling overdispersed binomial data to estimate event rate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The beta-binomial model is one of the methods that can be used to validly combine event rates from overdispersed binomial data. Our objective is to provide a full description of this method and to update and broaden its applications in clinical and public health research.</p> <p>Methods</p> <p>We describe the statistical theories behind the beta-binomial model and the associated estimation methods. We supply information about statistical software that can provide beta-binomial estimations. Using a published example, we illustrate the application of the beta-binomial model when pooling overdispersed binomial data.</p> <p>Results</p> <p>In an example regarding the safety of oral antifungal treatments, we had 41 treatment arms with event rates varying from 0% to 13.89%. Using the beta-binomial model, we obtained a summary event rate of 3.44% with a standard error of 0.59%. The parameters of the beta-binomial model took the values of 1.24 for alpha and 34.73 for beta.</p> <p>Conclusion</p> <p>The beta-binomial model can provide a robust estimate for the summary event rate by pooling overdispersed binomial data from different studies. The explanation of the method and the demonstration of its applications should help researchers incorporate the beta-binomial method as they aggregate probabilities of events from heterogeneous studies.</p

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    Electrokinetic behavior of two touching inhomogeneous biological cells and colloidal particles: Effects of multipolar interactions

    Get PDF
    We present a theory to investigate electro-kinetic behavior, namely, electrorotation and dielectrophoresis under alternating current (AC) applied fields for a pair of touching inhomogeneous colloidal particles and biological cells. These inhomogeneous particles are treated as graded ones with physically motivated model dielectric and conductivity profiles. The mutual polarization interaction between the particles yields a change in their respective dipole moments, and hence in the AC electrokinetic spectra. The multipolar interactions between polarized particles are accurately captured by the multiple images method. In the point-dipole limit, our theory reproduces the known results. We find that the multipolar interactions as well as the spatial fluctuations inside the particles can affect the AC electrokinetic spectra significantly.Comment: Revised version with minor changes: References added and discussion extende

    Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science + Business Media, LLC 2008Background - Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model. Methods - Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded. Results - The leak pressures observed for non-crosslinked NCEM (137.8 ± 22.3 mmHg), crosslinked XCEM0005 (109.1 ± 14.1 mmHg), XCEM001 (150.1 ± 16.0 mmHg), XCEM0033 (98.8 ± 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 ± 10.8 mmHg) and SIS (one and four layers) (62.6 ± 11.8 and 57.6 ± 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 ± 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure). Conclusions - These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.Enterprise Irelan

    Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons

    Get PDF
    Probing the neural circuit dynamics underlying behaviour would benefit greatly from improved genetically encoded voltage indicators. The proton pump ​Archaerhodopsin-3 (​Arch), an optogenetic tool commonly used for neuronal inhibition, has been shown to emit voltage-sensitive fluorescence. Here we report two ​Arch variants with enhanced radiance (Archers) that in response to 655 nm light have 3–5 times increased fluorescence and 55–99 times reduced photocurrents compared with ​Arch WT. The most fluorescent variant, Archer1, has 25–40% fluorescence change in response to action potentials while using 9 times lower light intensity compared with other ​Arch-based voltage sensors. Archer1 is capable of wavelength-specific functionality as a voltage sensor under red light and as an inhibitory actuator under green light. As a proof-of-concept for the application of ​Arch-based sensors in vivo, we show fluorescence voltage sensing in behaving Caenorhabditis elegans. Archer1’s characteristics contribute to the goal of all-optical detection and modulation of activity in neuronal networks in vivo

    Evolution in random fitness landscapes: the infinite sites model

    Full text link
    We consider the evolution of an asexually reproducing population in an uncorrelated random fitness landscape in the limit of infinite genome size, which implies that each mutation generates a new fitness value drawn from a probability distribution g(w)g(w). This is the finite population version of Kingman's house of cards model [J.F.C. Kingman, \textit{J. Appl. Probab.} \textbf{15}, 1 (1978)]. In contrast to Kingman's work, the focus here is on unbounded distributions g(w)g(w) which lead to an indefinite growth of the population fitness. The model is solved analytically in the limit of infinite population size NN \to \infty and simulated numerically for finite NN. When the genome-wide mutation probability UU is small, the long time behavior of the model reduces to a point process of fixation events, which is referred to as a \textit{diluted record process} (DRP). The DRP is similar to the standard record process except that a new record candidate (a number that exceeds all previous entries in the sequence) is accepted only with a certain probability that depends on the values of the current record and the candidate. We develop a systematic analytic approximation scheme for the DRP. At finite UU the fitness frequency distribution of the population decomposes into a stationary part due to mutations and a traveling wave component due to selection, which is shown to imply a reduction of the mean fitness by a factor of 1U1-U compared to the U0U \to 0 limit.Comment: Dedicated to Thomas Nattermann on the occasion of his 60th birthday. Submitted to JSTAT. Error in Section 3.2 was correcte

    Corrections to the Electroweak Effective Action at Finite Temperature

    Full text link
    We calculate contributions to the finite temperature effective action for the electroweak phase transition (EWPT) at \O(g^4), {\it i.e.} at second order in (g^2 T/\M) and all orders in (g^2 T^2/\M^2). This requires plasma-mass corrections in the calculation of the effective potential, inclusion of the ``lollipop'' diagram, and an estimate of derivative corrections. We find the EWPT remains too weakly first-order to drive baryogenesis. We calculate some one loop kinetic energy corrections using both functional and diagrammatic methods; these may be important for saddlepoint configurations such as the bounce or sphaleron.Comment: LaTeX, 6 figures available by email, CALT-68-1795, HUTP-92-A027, EFI-92-2

    Detecting the direction of a signal on high-dimensional spheres: Non-null and Le Cam optimality results

    Full text link
    We consider one of the most important problems in directional statistics, namely the problem of testing the null hypothesis that the spike direction θ\theta of a Fisher-von Mises-Langevin distribution on the pp-dimensional unit hypersphere is equal to a given direction θ0\theta_0. After a reduction through invariance arguments, we derive local asymptotic normality (LAN) results in a general high-dimensional framework where the dimension pnp_n goes to infinity at an arbitrary rate with the sample size nn, and where the concentration κn\kappa_n behaves in a completely free way with nn, which offers a spectrum of problems ranging from arbitrarily easy to arbitrarily challenging ones. We identify various asymptotic regimes, depending on the convergence/divergence properties of (κn)(\kappa_n), that yield different contiguity rates and different limiting experiments. In each regime, we derive Le Cam optimal tests under specified κn\kappa_n and we compute, from the Le Cam third lemma, asymptotic powers of the classical Watson test under contiguous alternatives. We further establish LAN results with respect to both spike direction and concentration, which allows us to discuss optimality also under unspecified κn\kappa_n. To investigate the non-null behavior of the Watson test outside the parametric framework above, we derive its local asymptotic powers through martingale CLTs in the broader, semiparametric, model of rotationally symmetric distributions. A Monte Carlo study shows that the finite-sample behaviors of the various tests remarkably agree with our asymptotic results.Comment: 47 pages, 4 figure

    Chaos in an Exact Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the problem of three body motion for a relativistic one-dimensional self-gravitating system. After describing the canonical decomposition of the action, we find an exact expression for the 3-body Hamiltonian, implicitly determined in terms of the four coordinate and momentum degrees of freedom in the system. Non-relativistically these degrees of freedom can be rewritten in terms of a single particle moving in a two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its post-Newtonian approximation. We then specialize to the equal mass case and numerically solve the equations of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining orbits in both the hexagonal and 3-body representations of the system, and plot the Poincare sections as a function of the relativistic energy parameter η\eta . We find two broad categories of periodic and quasi-periodic motions that we refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase-space between these two types. Despite the high degree of non-linearity in the relativistic system, we find that the the global structure of its phase space remains qualitatively the same as its non-relativisitic counterpart for all values of η\eta that we could study. However the relativistic system has a weaker symmetry and so its Poincare section develops an asymmetric distortion that increases with increasing η\eta . For the post-Newtonian system we find that it experiences a KAM breakdown for η0.26\eta \simeq 0.26: above which the near integrable regions degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon reques

    Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic

    Get PDF
    Background: Drug adverse event (AE) signal detection using the Gamma Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we conducted a pilot study to evaluate the implementation and findings of the GPS approach for two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels of granularity. Several signaling thresholds were assessed. GPS results were compared to findings from a companion study using the identical analytic dataset but an alternative statistical method—the tree-based scan statistic (TreeScan). Results: We identified 71 statistical signals across two signaling thresholds and two methods, including closely-related signals of overlapping diagnosis definitions. Initial review found that most signals represented known adverse drug reactions or confounding. About 31% of signals met the highest signaling threshold. Conclusions: The GPS method was successfully applied to observational health plan data in a distributed data environment as a drug safety data mining method. There was substantial concordance between the GPS and TreeScan approaches. Key method implementation decisions relate to defining exposures and outcomes and informed choice of signaling thresholds
    corecore