5,643 research outputs found

    Study and interpretation of the millimeter-wave spectrum of Venus

    Get PDF
    The effects of the Venus atmospheric constituents on its millimeter wavelength emission are investigated. Specifically, this research describes the methodology and the results of laboratory measurements which are used to calculate the opacity of some of the major absorbers in the Venus atmosphere. The pressure broadened absorption of gaseous SO2/CO2 and gaseous H2SO4/CO2 has been measured at millimeter wavelengths. We have also developed new formalisms for computing the absorptivities of these gases based on our laboratory work. The complex dielectric constant of liquid sulfuric acid has been measured and the expected opacity from the liquid sulfuric acid cloud layer found in the atmosphere of Venus has been evaluated. The partial pressure of gaseous H2SO4 has been measured which results in a more accurate estimate of the dissociation factor of H2SO4. A radiative transfer model has been developed in order to understand how each atmospheric constituent affects the millimeter wave emissions from Venus. Our results from the radiative transfer model are compared with recent observations of the micro-wave and millimeter wave emissions from Venus. Our main conclusion from this work is that gaseous H2SO4 is the most likely cause of the variation in the observed emission from Venus at 112 GHz

    Understanding the variation in the millimeter-wave emission of Venus

    Get PDF
    Recent observations of the millimeter-wave emission from Venus at 112 GHz (2.6 mm) have shown significant variations in the continuum flux emission that may be attributed to the variability in the abundances of absorbing constituents in the Venus atmosphere. Such constituents include gaseous H2SO4, SO2, and liquid sulfuric acid (cloud condensates). Recently, Fahd and Steffes have shown that the effects of liquid H, SO4, and gaseous SO2 cannot completely account for this measured variability in the millimeter-wave emission of Venus. Thus, it is necessary to study the effect of gaseous H2SO4 on the millimeter-wave emission of Venus. This requires knowledge of the millimeter-wavelength (MMW) opacity of gaseous H2SO4, which unfortunately has never been determined for Venus-like conditions. We have measured the opacity of gaseous H2SO4 in a CO2 atmosphere at 550, 570, and 590 K, at 1 and 2 atm total pressure, and at a frequency of 94.1 GHz. Our results, in addition to previous centimeter-wavelength results are used to verify a modeling formalism for calculating the expected opacity of this gaseous mixture at other frequencies. This formalism is incorporated into a radiative transfer model to study the effect of gaseous H2SO4 on the MMW emission of Venus

    The catalytic role of beta effect in barotropization processes

    Get PDF
    The vertical structure of freely evolving, continuously stratified, quasi-geostrophic flow is investigated. We predict the final state organization, and in particular its vertical structure, using statistical mechanics and these predictions are tested against numerical simulations. The key role played by conservation laws in each layer, including the fine-grained enstrophy, is discussed. In general, the conservation laws, and in particular that enstrophy is conserved layer-wise, prevent complete barotropization, i.e., the tendency to reach the gravest vertical mode. The peculiar role of the β\beta-effect, i.e. of the existence of planetary vorticity gradients, is discussed. In particular, it is shown that increasing β\beta increases the tendency toward barotropization through turbulent stirring. The effectiveness of barotropisation may be partly parameterized using the Rhines scale 2πE01/4/β1/22\pi E_{0}^{1/4}/\beta^{1/2}. As this parameter decreases (beta increases) then barotropization can progress further, because the beta term provides enstrophy to each layer

    Positive semi-definite embedding for dimensionality reduction and out-of-sample extensions

    Full text link
    In machine learning or statistics, it is often desirable to reduce the dimensionality of a sample of data points in a high dimensional space Rd\mathbb{R}^d. This paper introduces a dimensionality reduction method where the embedding coordinates are the eigenvectors of a positive semi-definite kernel obtained as the solution of an infinite dimensional analogue of a semi-definite program. This embedding is adaptive and non-linear. A main feature of our approach is the existence of a non-linear out-of-sample extension formula of the embedding coordinates, called a projected Nystr\"om approximation. This extrapolation formula yields an extension of the kernel matrix to a data-dependent Mercer kernel function. Our empirical results indicate that this embedding method is more robust with respect to the influence of outliers, compared with a spectral embedding method.Comment: 16 pages, 5 figures. Improved presentatio

    A canonical Frobenius structure

    Full text link
    We show that it makes sense to speak of THE Frobenius manifold attached to a convenient and nondegenerate Laurent polynomialComment: 24 page

    Can past gamma-ray bursts explain both INTEGRAL and ATIC/PAMELA/Fermi anomalies simultaneously?

    Full text link
    Gamma-ray bursts (GRBs) have been invoked to explain both the 511 keV emission from the galactic bulge and the high-energy positron excess inferred from the ATIC, PAMELA, and Fermi data. While independent explanations can be responsible for these phenomena, we explore the possibility of their common GRB-related origin by modeling the GRB distribution and estimating the rates. For an expected Milky Way long GRB rate, neither of the two signals is generic; the local excess requires a 2% coincidence, while the signal from the galactic center requires a 20% coincidence with respect to the timing of the latest GRB. The simultaneous explanation requires a 0.4% coincidence. Considering the large number of statistical "trials" created by multiple searches for new physics, the coincidences of a few per cent cannot be dismissed as unlikely. Alternatively, both phenomena can be explained by GRBs if the galactic rate is higher than expected. We also show that a similar result is difficult to obtain assuming a simplified short GRB distribution.Comment: 4 pages; version accepted for publicatio

    Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices

    Full text link
    We present a comprehensive study of the thermodynamic properties of the three-dimensional fermionic Hubbard model, with application to cold fermionic atoms subject to an optical lattice and a trapping potential. Our study is focused on the temperature range of current experimental interest. We employ two theoretical methods - dynamical mean-field theory and high-temperature series - and perform comparative benchmarks to delimitate their respective range of validity. Special attention is devoted to understand the implications that thermodynamic properties of this system have on cooling. Considering the distribution function of local occupancies in the inhomogeneous lattice, we show that, under adiabatic evolution, the variation of any observable (e.g., temperature) can be conveniently disentangled into two distinct contributions. The first contribution is due to the redistribution of atoms in the trap during the evolution, while the second one comes from the intrinsic change of the observable. Finally, we provide a simplified picture of the cooling procedure recently proposed in J.-S. Bernier et al., Phys. Rev. A 79, 061601 (2009) by applying this method to an idealized model.Comment: 17 pages, 27 figures, version published in PR

    Provenance for SPARQL queries

    Full text link
    Determining trust of data available in the Semantic Web is fundamental for applications and users, in particular for linked open data obtained from SPARQL endpoints. There exist several proposals in the literature to annotate SPARQL query results with values from abstract models, adapting the seminal works on provenance for annotated relational databases. We provide an approach capable of providing provenance information for a large and significant fragment of SPARQL 1.1, including for the first time the major non-monotonic constructs under multiset semantics. The approach is based on the translation of SPARQL into relational queries over annotated relations with values of the most general m-semiring, and in this way also refuting a claim in the literature that the OPTIONAL construct of SPARQL cannot be captured appropriately with the known abstract models.Comment: 22 pages, extended version of the ISWC 2012 paper including proof

    Tunneling study of cavity grade Nb: possible magnetic scattering at the surface

    Full text link
    Tunneling spectroscopy was performed on Nb pieces prepared by the same processes used to etch and clean superconducting radio frequency (SRF) cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap delta=1.55 meV, characteristic of clean, bulk Nb. However the tunneling density of states (DOS) was broadened significantly. The Nb pieces treated with the same mild baking used to improve the Q-slope in SRF cavities, reveal a sharper DOS. Good fits to the DOS were obtained using Shiba theory, suggesting that magnetic scattering of quasiparticles is the origin of the gapless surface superconductivity and a heretofore unrecognized contributor to the Q-slope problem of Nb SRF cavities.Comment: 3 pages, 3 figure
    • …
    corecore