343 research outputs found

    Regularity results for the spherically symmetric Einstein-Vlasov system

    Full text link
    The spherically symmetric Einstein-Vlasov system is considered in Schwarzschild coordinates and in maximal-isotropic coordinates. An open problem is the issue of global existence for initial data without size restrictions. The main purpose of the present work is to propose a method of approach for general initial data, which improves the regularity of the terms that need to be estimated compared to previous methods. We prove that global existence holds outside the centre in both these coordinate systems. In the Schwarzschild case we improve the bound on the momentum support obtained in \cite{RRS} for compact initial data. The improvement implies that we can admit non-compact data with both ingoing and outgoing matter. This extends one of the results in \cite{AR1}. In particular our method avoids the difficult task of treating the pointwise matter terms. Furthermore, we show that singularities never form in Schwarzschild time for ingoing matter as long as 3m≀r.3m\leq r. This removes an additional assumption made in \cite{A1}. Our result in maximal-isotropic coordinates is analogous to the result in \cite{R1}, but our method is different and it improves the regularity of the terms that need to be estimated for proving global existence in general.Comment: 25 pages. To appear in Ann. Henri Poincar\'

    Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter

    Get PDF
    We prove a new global existence result for the asymptotically flat, spherically symmetric Einstein-Vlasov system which describes in the framework of general relativity an ensemble of particles which interact by gravity. The data are such that initially all the particles are moving radially outward and that this property can be bootstrapped. The resulting non-vacuum spacetime is future geodesically complete.Comment: 16 page

    A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein-Vlasov system

    Full text link
    The stability features of steady states of the spherically symmetric Einstein-Vlasov system are investigated numerically. We find support for the conjecture by Zeldovich and Novikov that the binding energy maximum along a steady state sequence signals the onset of instability, a conjecture which we extend to and confirm for non-isotropic states. The sign of the binding energy of a solution turns out to be relevant for its time evolution in general. We relate the stability properties to the question of universality in critical collapse and find that for Vlasov matter universality does not seem to hold.Comment: 29 pages, 10 figure

    On the area of the symmetry orbits in T2T^2 symmetric spacetimes

    Full text link
    We obtain a global existence result for the Einstein equations. We show that in the maximal Cauchy development of vacuum T2T^2 symmetric initial data with nonvanishing twist constant, except for the special case of flat Kasner initial data, the area of the T2T^2 group orbits takes on all positive values. This result shows that the areal time coordinate RR which covers these spacetimes runs from zero to infinity, with the singularity occurring at R=0.Comment: The appendix which appears in version 1 has a technical problem (the inequality appearing as the first stage of (52) is not necessarily true), and since the appendix is unnecessary for the proof of our results, we leave it out. version 2 -- clarifications added, version 3 -- reference correcte

    Bounds on the mass-to-radius ratio for non-compact field configurations

    Full text link
    It is well known that a spherically symmetric compact star whose energy density decreases monotonically possesses an upper bound on its mass-to-radius ratio, 2M/R≀8/92M/R\leq 8/9. However, field configurations typically will not be compact. Here we investigate non-compact static configurations whose matter fields have a slow global spatial decay, bounded by a power law behavior. These matter distributions have no sharp boundaries. We derive an upper bound on the fundamental ratio max_r{2m(r)/r} which is valid throughout the bulk. In its simplest form, the bound implies that in any region of spacetime in which the radial pressure increases, or alternatively decreases not faster than some power law r−(c+4)r^{-(c+4)}, one has 2m(r)/r≀(2+2c)/(3+2c)2m(r)/r \leq (2+2c)/(3+2c). [For c≀0c \leq 0 the bound degenerates to 2m(r)/r≀2/32m(r)/r \leq 2/3.] In its general version, the bound is expressed in terms of two physical parameters: the spatial decaying rate of the matter fields, and the highest occurring ratio of the trace of the pressure tensor to the local energy density.Comment: 4 page

    The Einstein-Vlasov System/Kinetic Theory

    Full text link
    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein--Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein--Vlasov system. Since then many theorems on global properties of solutions to this system have been established.Comment: Published version http://www.livingreviews.org/lrr-2011-

    Existence of axially symmetric static solutions of the Einstein-Vlasov system

    Full text link
    We prove the existence of static, asymptotically flat non-vacuum spacetimes with axial symmetry where the matter is modeled as a collisionless gas. The axially symmetric solutions of the resulting Einstein-Vlasov system are obtained via the implicit function theorem by perturbing off a suitable spherically symmetric steady state of the Vlasov-Poisson system.Comment: 32 page

    8-Triazolylpurines: Towards Fluorescent Inhibitors of the MDM2/p53 Interaction

    Get PDF
    Small molecule nonpeptidic mimics of alpha-helices are widely recognised as protein-protein interaction (PPIs) inhibitors. Protein-protein interactions mediate virtually all important regulatory pathways in a cell, and the ability to control and modulate PPIs is therefore of great significance to basic biology, where controlled disruption of protein networks is key to understanding network connectivity and function. We have designed and synthesised two series of 2,6,9-substituted 8-triazolylpurines as alpha-helix mimetics. The first series was designed based on low energy conformations but did not display any biological activity in a biochemical fluorescence polarisation assay targeting MDM2/p53. Although solution NMR conformation studies demonstrated that such molecules could mimic the topography of an alpha-helix, docking studies indicated that the same compounds were not optimal as inhibitors for the MDM2/p53 interaction. A new series of 8-triazolylpurines was designed based on a combination of docking studies and analysis of recently published inhibitors. The best compound displayed low micromolar inhibitory activity towards MDM2/p53 in a biochemical fluorescence polarisation assay. In order to evaluate the applicability of these compounds as biologically active and intrinsically fluorescent probes, their absorption/emission properties were measured. The compounds display fluorescent properties with quantum yields up to 50%

    Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials

    Full text link
    In this paper it is shown that unique solutions to the relativistic Boltzmann equation exist for all time and decay with any polynomial rate towards their steady state relativistic Maxwellian provided that the initial data starts out sufficiently close in Lℓ∞L^\infty_\ell. If the initial data are continuous then so is the corresponding solution. We work in the case of a spatially periodic box. Conditions on the collision kernel are generic in the sense of (Dudy{\'n}ski and Ekiel-Je{\.z}ewska, Comm. Math. Phys., 1988); this resolves the open question of global existence for the soft potentials.Comment: 64 page
    • 

    corecore