668 research outputs found

    Time delay for one-dimensional quantum systems with steplike potentials

    Full text link
    This paper concerns time-dependent scattering theory and in particular the concept of time delay for a class of one-dimensional anisotropic quantum systems. These systems are described by a Schr\"{o}dinger Hamiltonian H=Δ+VH = -\Delta + V with a potential V(x)V(x) converging to different limits VV_{\ell} and VrV_{r} as xx \to -\infty and x+x \to +\infty respectively. Due to the anisotropy they exhibit a two-channel structure. We first establish the existence and properties of the channel wave and scattering operators by using the modern Mourre approach. We then use scattering theory to show the identity of two apparently different representations of time delay. The first one is defined in terms of sojourn times while the second one is given by the Eisenbud-Wigner operator. The identity of these representations is well known for systems where V(x)V(x) vanishes as x|x| \to \infty (V=VrV_\ell = V_r). We show that it remains true in the anisotropic case VVrV_\ell \not = V_r, i.e. we prove the existence of the time-dependent representation of time delay and its equality with the time-independent Eisenbud-Wigner representation. Finally we use this identity to give a time-dependent interpretation of the Eisenbud-Wigner expression which is commonly used for time delay in the literature.Comment: 48 pages, 1 figur

    Photon position measure

    Full text link
    The positive operator valued measure (POVM) for a photon counting array detector is derived and found to equal photon flux density integrated over pixel area and measurement time. Since photon flux density equals number density multiplied by the speed of light, this justifies theoretically the observation that a photon counting array provides a coarse grained measurement of photon position. The POVM obtained here can be written as a set of projectors onto a basis of localized states, consistent with the description of photon position in a recent quantum imaging proposal [M. Tsang, Phys. Rev. Lett. \textbf{102}, 253601 (2009)]. The wave function that describes a photon counting experiment is the projection of the photon state vector onto this localized basis. Collapse is to the electromagnetic vacuum and not to a localized state, thus violating the text book rules of quantum mechanics but compatible with the theory of generalized observables and the nonlocalizability of an incoming photon

    On the exit statistics theorem of many particle quantum scattering

    Full text link
    We review the foundations of the scattering formalism for one particle potential scattering and discuss the generalization to the simplest case of many non interacting particles. We point out that the "straight path motion" of the particles, which is achieved in the scattering regime, is at the heart of the crossing statistics of surfaces, which should be thought of as detector surfaces. We sketch a proof of the relevant version of the many particle flux across surfaces theorem and discuss what needs to be proven for the foundations of scattering theory in this context.Comment: 15 pages, 4 figures; to appear in the proceedings of the conference "Multiscale methods in Quantum Mechanics", Accademia dei Lincei, Rome, December 16-20, 200

    The various power decays of the survival probability at long times for free quantum particle

    Get PDF
    The long time behaviour of the survival probability of initial state and its dependence on the initial states are considered, for the one dimensional free quantum particle. We derive the asymptotic expansion of the time evolution operator at long times, in terms of the integral operators. This enables us to obtain the asymptotic formula for the survival probability of the initial state ψ(x)\psi (x), which is assumed to decrease sufficiently rapidly at large x|x|. We then show that the behaviour of the survival probability at long times is determined by that of the initial state ψ\psi at zero momentum k=0k=0. Indeed, it is proved that the survival probability can exhibit the various power-decays like t2m1t^{-2m-1} for an arbitrary non-negative integers mm as tt \to \infty , corresponding to the initial states with the condition ψ^(k)=O(km)\hat{\psi} (k) = O(k^m) as k0k\to 0.Comment: 15 pages, to appear in J. Phys.
    corecore