26 research outputs found

    Investigation of high-pT hadron production in interactions with nucleon and nucleus targets

    No full text
    katedra fyzik

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report on the production of inclusive ΄(1S) and ΄(2S) in p-Pb collisions at sNN−−−√=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (−4.46<ycms<−2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the ΄(1S) and ΄(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of ΄(1S). A suppression of the inclusive ΄(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects

    Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at √s = 2.76 TeV

    No full text
    The pT-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at s√=2.76 TeV in the transverse momentum range 0.5 < pT < 12 GeV/c with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties

    Beauty production in pp collisions at √s = 2.76 TeV measured via semi-electronic decays

    No full text
    The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s√= 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, σb→e=3.47±0.40(stat)+1.12−1.33(sys)±0.07(norm)ÎŒb, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total bbÂŻ production cross section, σbbÂŻ=130±15.1(stat)+42.1−49.8(sys)+3.4−3.1(extr)±2.5(norm)±4.4(BR)ÎŒb

    Centrality dependence of pion freeze-out radii in Pb-Pb collisions at √sNN = 2.76 TeV

    No full text
    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb--Pb collisions at sNN−−−√=2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with ⟹dNch/dη⟩1/3. This behaviour is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller sNN−−−√, a decrease in the Rout/Rside ratio is seen, which is in qualitative agreement with specific predictions from hydrodynamic models. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the LHC

    Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The production of J/ψ and ψ(2S) was measured with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity (2.5<y<4) down to zero transverse momentum (pT) in the dimuon decay channel. Inclusive J/ψ yields were extracted in different centrality classes and the centrality dependence of the average pT is presented. The J/ψ suppression, quantified with the nuclear modification factor (RAA), was studied as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/ψ production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the ψ(2S) suppression are provided via the ratio of ψ(2S) over J/ψ measured in pp and Pb-Pb collisions

    Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

    No full text
    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity

    Coherent ψ(2S) photo-production in ultra-peripheral PbPb collisions at √sNN=2.76 TeV

    No full text
    We have performed the first measurement of the coherent ψ(2S) photo-production cross section in ultra-peripheral PbPb collisions at the LHC. This charmonium excited state is reconstructed via the ψ(2S)→l+l− and ψ(2S)→J/ψπ+π− decays, where the J/ψ decays into two leptons. The analysis is based on an event sample corresponding to an integrated luminosity of about 22 Όb−1. The cross section for coherent ψ(2S) production in the rapidity interval −0.9<y<0.9 is dσψ(2S)coh/dy=0.83±0.19(stat+syst) mb. The ψ(2S) to J/ψ coherent cross section ratio is 0.34−0.07+0.08(stat+syst). The obtained results are compared to predictions from theoretical models

    One-dimensional pion, kaon, and proton femtoscopy in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The size of the particle emission region in high-energy collisions can be deduced using the femtoscopic correlations of particle pairs at low relative momentum. Such correlations arise due to quantum statistics and Coulomb and strong final state interactions. In this paper, results are presented from femtoscopic analyses of π±π±, K±K±, K0SK0S, pp, and pÂŻÂŻÂŻpÂŻÂŻÂŻ correlations from Pb-Pb collisions at sNN−−−√=2.76 TeV by the ALICE experiment at the LHC. One-dimensional radii of the system are extracted from correlation functions in terms of the invariant momentum difference of the pair. The comparison of the measured radii with the predictions from a hydrokinetic model is discussed. The pion and kaon source radii display a monotonic decrease with increasing average pair transverse mass mT which is consistent with hydrodynamic model predictions for central collisions. The kaon and proton source sizes can be reasonably described by approximate mT-scaling

    Centrality dependence of high-pT D meson suppression in Pb-Pb collisions at √sNN = 2.76 TeV

    No full text
    The nuclear modification factor, RAA, of the prompt charmed mesons D0, D+ and D∗+, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy sNN−−−√=2.76 TeV in two transverse momentum intervals, 5<pT<8 GeV/c and 8<pT<16 GeV/c, and in six collision centrality classes. The RAA shows a maximum suppression of a factor of 5-6 in the 10% most central collisions. The suppression and its centrality dependence are compatible within uncertainties with those of charged pions. A comparison with the RAA of non-prompt J/ψ from B meson decays, measured by the CMS Collaboration, hints at a larger suppression of D mesons in the most central collisions
    corecore