220 research outputs found
Irreversibility on the Level of Single-Electron Tunneling
We present a low-temperature experimental test of the fluctuation theorem for
electron transport through a double quantum dot. The rare entropy-consuming
system trajectories are detected in the form of single charges flowing against
the source-drain bias by using time-resolved charge detection with a quantum
point contact. We find that these trajectories appear with a frequency that
agrees with the theoretical predictions even under strong nonequilibrium
conditions, when the finite bandwidth of the charge detection is taken into
account
A V-shape superconducting artificial atom based on two inductively coupled transmons
Circuit quantum electrodynamics systems are typically built from resonators
and two-level artificial atoms, but the use of multi-level artificial atoms
instead can enable promising applications in quantum technology. Here we
present an implementation of a Josephson junction circuit dedicated to operate
as a V-shape artificial atom. Based on a concept of two internal degrees of
freedom, the device consists of two transmon qubits coupled by an inductance.
The Josephson nonlinearity introduces a strong diagonal coupling between the
two degrees of freedom that finds applications in quantum non-demolition
readout schemes, and in the realization of microwave cross-Kerr media based on
superconducting circuits.Comment: 5 pages, 3 figure
Time-resolved charge detection with cross-correlation techniques
We present time-resolved charge sensing measurements on a GaAs double quantum
dot with two proximal quantum point contact (QPC) detectors. The QPC currents
are analyzed with cross-correlation techniques, which enables us to measure dot
charging and discharging rates for significantly smaller signal-to-noise ratios
than required for charge detection with a single QPC. This allows to reduce the
current level in the detector and therefore the invasiveness of the detection
process and may help to increase the available measurement bandwidth in
noise-limited setups.Comment: 6 pages, 4 figure
Quantum dot occupation and electron dwell time in the cotunneling regime
We present comparative measurements of the charge occupation and conductance
of a GaAs/AlGaAs quantum dot. The dot charge is measured with a capacitively
coupled quantum point contact sensor. In the single-level Coulomb blockade
regime near equilibrium, charge and conductance signals are found to be
proportional to each other. We conclude that in this regime, the two signals
give equivalent information about the quantum dot system. Out of equilibrium,
we study the inelastic-cotunneling regime. We compare the measured differential
dot charge with an estimate assuming a dwell time of transmitted carriers on
the dot given by h/E, where E is the blockade energy of first-order tunneling.
The measured signal is of a similar magnitude as the estimate, compatible with
a picture of cotunneling as transmission through a virtual intermediate state
with a short lifetime
Optimization of sample-chip design for stub-matched radio-frequency reflectometry measurements
A radio-frequency (rf) matching circuit with an in situ tunable varactor
diode used for rf reflectometry measurements in semiconductor nanostructures is
investigated and used to optimize the sample-specific chip design. The samples
are integrated in a 2-4 GHz stub-matching circuit consisting of a waveguide
stub shunted to the terminated coplanar waveguide. Several quantum point
contacts fabricated on a GaAs/AlGaAs heterostructure with different chip
designs are compared. We show that the change of the reflection coefficient for
a fixed change in the quantum point contact conductance can be enhanced by a
factor of 3 compared to conventional designs by a suitable electrode geometry
Epitaxial rhenium microwave resonators
International audienceWe have fabricated rhenium microwave resonators from epitaxial films. We have used thin films of different structural quality depending on their growth conditions. The resonators were coupled to a microwave transmission line which allows the measurement of their resonance frequencies and internal quality factors. From the resonance frequency at low temperature , the effective penetration depth and the London penetration depth of the rhenium film are extracted
- …