12 research outputs found

    Immobilisation nach elektrothermischem Shrinkage kollagenhaltigen Gewebes:histologische Auswertung einer in-vivo Tierversuchsstudie

    Full text link
    In dieser Studie wurden die Ligg. patellae von Kaninchen mittels Radiofrequenz (RF)-Energie verkürzt und postoperativ immobilisiert. Ziel war es, die Auswirkungen einer postoperativen Immobilisation histologisch zu untersuchen. Die Evaluation der Sehnenheilung erfolgte überwiegend durch Polarisationsmikroskopie, Immunhistologie und TUNEL-Labeling. Mittels Bildanalyse, sowie histologischer Scores wurden die Effekte von RF-Behandlung auf Zellularität und Apoptose, extrazelluläre Matrix, Nervengewebe und Vaskularisierung untersucht. RF-Behandlung induziert Apoptose von Fibroblasten. Immobilisation reduziert während der frühen Phase der Heilung die Zellularität des Gewebes. Im histologischen Vergleich zeigen die immobilisierten Sehnen bessere Ergebnisse gegenüber den mobilen Sehnen. Von einer konsekutiv reduzierten Degradation und Neusynthese der Matrix profitiert die Gewebereifung und damit auch die biomechanische Stabilität der Sehnen. Wir empfehlen nach RF eine Immobilisation für 3-6 Wochen

    Nanomechanics of the endothelial glycocalyx in experimental sepsis

    Full text link
    The endothelial glycocalyx (eGC), a carbohydrate-rich layer lining the luminal side of the endothelium, regulates vascular adhesiveness and permeability. Although central to the pathophysiology of vascular barrier dysfunction in sepsis, glycocalyx damage has been generally understudied, in part because of the aberrancy of in vitro preparations and its degradation during tissue handling. The aim of this study was to analyze inflammation-induced damage of the eGC on living endothelial cells by atomic-force microscopy (AFM) nanoindentation technique. AFM revealed the existence of a mature eGC on the luminal endothelial surface of freshly isolated rodent aorta preparations ex vivo, as well as on cultured human pulmonary microvascular endothelial cells (HPMEC) in vitro. AFM detected a marked reduction in glycocalyx thickness (266 ± 12 vs. 137 ± 17 nm, P<0.0001) and stiffness (0.34 ± 0.03 vs. 0.21 ± 0.01 pN/mn, P<0.0001) in septic mice (1 mg E. coli lipopolysaccharides (LPS)/kg BW i.p.) compared to controls. Corresponding in vitro experiments revealed that sepsis-associated mediators, such as thrombin, LPS or Tumor Necrosis Factor-α alone were sufficient to rapidly decrease eGC thickness (-50%, all P<0.0001) and stiffness (-20% P<0.0001) on HPMEC. In summary, AFM nanoindentation is a promising novel approach to uncover mechanisms involved in deterioration and refurbishment of the eGC in sepsis

    Indoleamine-2,3-dioxygenase activity in experimental human endotoxemia

    Full text link
    Background: Excessive tryptophan metabolism to kynurenine by the rate-limiting enzyme endothelial indoleamine 2,3-dioxygenase 1 (IDO) controls arterial vessel relaxation and causes hypotension in murine endotoxemia. However, its relevance in human endotoxemia has not been investigated so far. We thus aimed to study changes in blood pressure in parallel with tryptophan and kynurenine levels during experimental endotoxemia in humans. Findings: Six healthy male volunteers were given E. coli lipopolysaccharide (LPS; 4 ng/kg) as a 1-min intravenous infusion. They had levels of soluble E-Selectin and soluble vascular cell adhesion molecule-1 as well as IDO activity assessed as the kynurenine-to-tryptophan plasma ratio by liquid chromatography-tandem mass spectrometry at various time points during a 24 h time course. During endotoxemia, IDO activity significantly increased, reaching peak levels at 8 h after LPS infusion (44.0 ± 15.2 vs. 29.4 ± 6.8 at baseline, P<0.0001). IDO activity correlated inversely with the development of hypotension as shown by random effects linear regression models. Finally, IDO activity exhibited a kinetic profile similar to that of soluble endothelial-specific adhesion molecules. Conclusions: LPS is a triggering factor for the induction of IDO in men. Our findings strongly support the concept that the induction of IDO in the vascular endothelium contributes to hypotension in human sepsis

    Sepsis recognition in the emergency department – impact on quality of care and outcome?

    Full text link
    BACKGROUNG: Appropriate and timely recognition of sepsis is a prerequisite for starting goal-directed therapy bundles. We analyzed the appropriateness of sepsis recognition and documentation with regard to adequacy of therapy and outcome in an internal medicine emergency department (ED). METHODS: This study included 487 consecutive patients ≥18 years of age who presented to a university hospital ED during a 4-week period. Clinical, laboratory, and follow-up data were acquired independently from documentation by ED physicians. The study team independently rated quality of sepsis classification (American College of Chest Physicians/Society of Critical Care Medicine definitions), diagnostic workup, and guideline-adherent therapy in the ED. RESULTS: Of 487 included patients, 110 presented because of infection. Of those, 54 patients matched sepsis criteria, including 20 with organ damage and thus severe sepsis, as rated by the study team. Sepsis was not recognized in 32 of these 54 cases (59%). Multivariate binary logistic regression analysis revealed that higher systolic blood pressure (p <br

    Indoleamine-2,3-dioxygenase activity in experimental human endotoxemia

    Get PDF
    UNLABELLED: BACKGROUND: Excessive tryptophan metabolism to kynurenine by the rate-limiting enzyme endothelial indoleamine 2,3-dioxygenase 1 (IDO) controls arterial vessel relaxation and causes hypotension in murine endotoxemia. However, its relevance in human endotoxemia has not been investigated so far. We thus aimed to study changes in blood pressure in parallel with tryptophan and kynurenine levels during experimental endotoxemia in humans. FINDINGS: Six healthy male volunteers were given E. coli lipopolysaccharide (LPS; 4 ng/kg) as a 1-min intravenous infusion. They had levels of soluble E-Selectin and soluble vascular cell adhesion molecule-1 as well as IDO activity assessed as the kynurenine-to-tryptophan plasma ratio by liquid chromatography-tandem mass spectrometry at various time points during a 24 h time course. During endotoxemia, IDO activity significantly increased, reaching peak levels at 8 h after LPS infusion (44.0 ± 15.2 vs. 29.4 ± 6.8 at baseline, P<0.0001). IDO activity correlated inversely with the development of hypotension as shown by random effects linear regression models. Finally, IDO activity exhibited a kinetic profile similar to that of soluble endothelial-specific adhesion molecules. CONCLUSIONS: LPS is a triggering factor for the induction of IDO in men. Our findings strongly support the concept that the induction of IDO in the vascular endothelium contributes to hypotension in human sepsis

    The Synthetic Tie2 Agonist Peptide Vasculotide Protects Renal Vascular Barrier Function In Experimental Acute Kidney Injury

    Full text link
    Microvascular barrier dysfunction plays a major role in the pathophysiology of acute kidney injury (AKI). Angiopoietin-1, the natural agonist ligand for the endothelial-specific Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor. Here we evaluate the efficacy of a polyethylene glycol-clustered Tie2 agonist peptide, vasculotide (VT), to protect against endothelial-cell activation with subsequent microvascular dysfunction in a murine model of ischemic AKI. Renal ischemia reperfusion injury (IRI) was induced by clamping of the renal arteries for 35 minutes. Mice were treated with VT or PEGylated cysteine before IRI. Sham-operated animals served as time-matched controls. Treatment with VT significantly reduced transcapillary albumin flux and renal tissue edema after IRI. The protective effects of VT were associated with activation of Tie2 and stabilization of its downstream effector, VE-cadherin in renal vasculature. VT abolished the decline in renal tissue blood flow, attenuated the increase of serum creatinine and blood urea nitrogen after IRI, improved recovery of renal function and markedly reduced mortality compared to PEG [HR 0.14 (95% CI 0.05–0.78) P < 0.05]. VT is inexpensive to produce, chemically stable and unrelated to any Tie2 ligands. Thus, VT may represent a novel therapy to prevent AKI in patients
    corecore