306 research outputs found

    Dynamical density-matrix renormalization-group method

    Full text link
    I present a density-matrix renormalization-group (DMRG) method for calculating dynamical properties and excited states in low-dimensional lattice quantum many-body systems. The method is based on an exact variational principle for dynamical correlation functions and the excited states contributing to them. This dynamical DMRG is an alternate formulation of the correction vector DMRG but is both simpler and more accurate. The finite-size scaling of spectral functions is discussed and a method for analyzing the scaling of dense spectra is described. The key idea of the method is a size-dependent broadening of the spectrum.The dynamical DMRG and the finite-size scaling analysis are demonstrated on the optical conductivity of the one-dimensional Peierls-Hubbard model. Comparisons with analytical results show that the spectral functions of infinite systems can be reproduced almost exactly with these techniques. The optical conductivity of the Mott-Peierls insulator is investigated and it is shown that its spectrum is qualitatively different from the simple spectra observed in Peierls (band) insulators and one-dimensional Mott-Hubbard insulators.Comment: 16 pages (REVTEX 4.0), 10 figures (in 13 EPS files

    The low-energy theory for the Bose-Hubbard model and the normal ground state of bosons

    Full text link
    A bosonic realization of the SU(2) Lie algebra and of its vector representation is constructed, and an effective low-energy description of the Bose-Hubbard model in the form of anisotropic theory of quantum rotors is proposed and discussed. A possibility of a normal zero-temperature bosonic phase with neither crystalline nor superfluid order around the tip of the checkerboard-solid lobe at half-integer fillings is examined.Comment: 8 pages, LaTex, one postscript figur

    Optical conductivity of the half-filled Hubbard chain

    Full text link
    We combine well-controlled analytical and numerical methods to determine the optical conductivity of the one-dimensional Mott-Hubbard insulator at zero temperature. A dynamical density-matrix renormalization group method provides the entire absorption spectrum for all but very small coupling strengths. In this limit we calculate the conductivity analytically using exact field-theoretical methods. Above the Lieb-Wu gap the conductivity exhibits a characteristic square-root increase. For small to moderate interactions, a sharp maximum occurs just above the gap. For larger interactions, another weak feature becomes visible around the middle of the absorption band.Comment: 4 pages with 3 eps figures, published version (changes in text and references

    Mott-Superfluid transition in bosonic ladders

    Full text link
    We show that in a commensurate bosonic ladder, a quantum phase transition occurs between a Mott insulator and a superfluid when interchain hopping increases. We analyse the properties of such a transition as well as the physical properties of the two phases. We discuss the physical consequences for experimental systems such as Josephson Junction arrays.Comment: 4 pages, 2 figures, revtex

    Excitons in one-dimensional Mott insulators

    Full text link
    We employ dynamical density-matrix renormalization group (DDMRG) and field-theory methods to determine the frequency-dependent optical conductivity in one-dimensional extended, half-filled Hubbard models. The field-theory approach is applicable to the regime of `small' Mott gaps which is the most difficult to access by DDMRG. For very large Mott gaps the DDMRG recovers analytical results obtained previously by means of strong-coupling techniques. We focus on exciton formation at energies below the onset of the absorption continuum. As a consequence of spin-charge separation, these Mott-Hubbard excitons are bound states of spinless, charged excitations (`holon-antiholon' pairs). We also determine exciton binding energies and sizes. In contrast to simple band insulators, we observe that excitons exist in the Mott-insulating phase only for a sufficiently strong intersite Coulomb repulsion. Furthermore, our results show that the exciton binding energy and size are not related in a simple way to the strength of the Coulomb interaction.Comment: 15 pages, 6 eps figures, corrected typos in labels of figures 4,5, and

    Phases of the one-dimensional Bose-Hubbard model

    Full text link
    The zero-temperature phase diagram of the one-dimensional Bose-Hubbard model with nearest-neighbor interaction is investigated using the Density-Matrix Renormalization Group. Recently normal phases without long-range order have been conjectured between the charge density wave phase and the superfluid phase in one-dimensional bosonic systems without disorder. Our calculations demonstrate that there is no intermediate phase in the one-dimensional Bose-Hubbard model but a simultaneous vanishing of crystalline order and appearance of superfluid order. The complete phase diagrams with and without nearest-neighbor interaction are obtained. Both phase diagrams show reentrance from the superfluid phase to the insulator phase.Comment: Revised version, 4 pages, 5 figure

    Density-matrix renormalisation group approach to quantum impurity problems

    Full text link
    A dynamic density-matrix renormalisation group approach to the spectral properties of quantum impurity problems is presented. The method is demonstrated on the spectral density of the flat-band symmetric single-impurity Anderson model. We show that this approach provides the impurity spectral density for all frequencies and coupling strengths. In particular, Hubbard satellites at high energy can be obtained with a good resolution. The main difficulties are the necessary discretisation of the host band hybridised with the impurity and the resolution of sharp spectral features such as the Abrikosov-Suhl resonance.Comment: 16 pages, 6 figures, submitted to Journal of Physics: Condensed Matte

    Sunitinib Inhibits Cell Proliferation and Alters Steroidogenesis by Down-Regulation of HSD3B2 in Adrenocortical Carcinoma Cells

    Get PDF
    The multi-tyrosine kinase inhibitor sunitinib is used in the treatment of several solid tumors. Animal experiments pointed to an adrenotoxic effect of sunitinib. Therefore, we evaluated the expression of key targets of sunitinib in human adrenocortical carcinoma (ACC) tumor samples and investigated its in vitro effects in ACC cell lines. We carried out immunohistochemistry for vascular endothelial growth factor (VEGF) and its receptor (VEGF-R2) in 157 ACC samples and nine normal adrenal glands. VEGF and VEGF-R2 protein were expressed in 72 and 99% of ACC samples, respectively. Using NCI-H295 and SW13 ACC cell lines, we investigated the effects of sunitinib on cell proliferation. Sunitinib reduced dose-dependently cell viability of both NCI-H295 and SW13 cells (SW13: 0.1 μM 96 ± 7%, 1 μM 90 ± 9%*, 5 μM 62 ± 6%*, controls 100 ± 9%; *p < 0.05). To determine sunitinib effects on steroidogenesis, we measured steroid hormones in cell culture supernatant by gas chromatography–mass spectrometry. We observed a pronounced decrease of cortisol secretion (1 μM 90.1 ± 1.5%*, 5 μM 57.2 ± 0.3%*, controls 100 ± 2.4%) and a concomitant increase in the DHEA/4-androstenedione and 17-hydroxypregnenolone/17-hydroxyprogesterone ratios, indicating specific inhibition of 3β-hydroxysteroid dehydrogenase (HSD3B2). In yeast microsomes transformed with HSD3B2, no direct inhibition of HSD3B2 by sunitinib was detected. Sunitinib induced down-regulation of HSD3B2 mRNA and protein in ACC cell lines (mRNA: 1 μM 44 ± 16%*; 5 μM 22 ± 2%*; 10 μM 19 ± 4%*; protein: 1 μM 82 ± 8%; 5 μM 63 ± 8%*; 10 μM 55 ± 9%*). CYP11B1 was down-regulated at mRNA but not at protein level and CYP11A1 remained unchanged. In conclusion, target molecules of sunitinib are expressed in the vast majority of ACC samples. Sunitinib exhibits anti-proliferative effects in vitro, and appears to specifically block adrenal steroidogenesis by down-regulation of HSD3B2, rendering it a promising option for treatment of ACC
    corecore