2,414 research outputs found

    Local Nature of Coset Models

    Full text link
    The local algebras of the maximal Coset model C_max associated with a chiral conformal subtheory A\subset B are shown to coincide with the local relative commutants of A in B, provided A contains a stress energy tensor. Making the same assumption, the adjoint action of the unique inner-implementing representation U^A associated with A\subset B on the local observables in B is found to define net-endomorphisms of B. This property is exploited for constructing from B a conformally covariant holographic image in 1+1 dimensions which proves useful as a geometric picture for the joint inclusion A\vee C_max \subset B. Immediate applications to the analysis of current subalgebras are given and the relation to normal canonical tensor product subfactors is clarified. A natural converse of Borchers' theorem on half-sided translations is made accessible.Comment: 33 pages, no figures; typos, minor improvement

    Structure of self-assembled Mn atom chains on Si(001)

    Get PDF
    Mn has been found to self-assemble into atomic chains running perpendicular to the surface dimer reconstruction on Si(001). They differ from other atomic chains by a striking asymmetric appearance in filled state scanning tunneling microscopy (STM) images. This has prompted complicated structural models involving up to three Mn atoms per chain unit. Combining STM, atomic force microscopy and density functional theory we find that a simple necklace-like chain of single Mn atoms reproduces all their prominent features, including their asymmetry not captured by current models. The upshot is a remarkably simpler structure for modelling the electronic and magnetic properties of Mn atom chains on Si(001).Comment: 5 pages, 4 figure

    Endotaxial Si nanolines in Si(001):H

    Full text link
    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure

    The Activities and Aspirations of the Estonian Grassland Society

    Get PDF
    The aim of the Estonian Grassland Society (EGS) is to develop the flow of grassland-based knowledge between different stakeholders and multidisciplinary research and to create international contacts. The EGS is a non-profit organisation and more than 100 interdisciplinary researchers, plant breeders, advisors and farmers are actively involved in the work of the society. The interdisciplinary activities are becoming more and more attractive and important and bring together different target groups. At present seminars, which are focused on the adaptation producers to the EU rules and support system for farmers are attractive. Nowadays the essential goal for the EGS is to find solutions for integrating efficient grassland management and biodiversity, including socio-economic aspects. Novel approaches to combine the benefits for wildlife and the grass producer will be highlighted in the future EGS activities

    Myosin II filament dynamics in actin networks revealed with interferometric scattering microscopy

    Get PDF
    The plasma membrane and the underlying cytoskeletal cortex constitute active platforms for a variety of cellular processes. Recent work has shown that the remodeling acto-myosin network modifies local membrane organization, but the molecular details are only partly understood due to difficulties with experimentally accessing the relevant time and length scales. Here, we use interferometric scattering (iSCAT) microscopy to investigate a minimal acto-myosin network linked to a supported lipid bilayer membrane. Using the magnitude of the interferometric contrast, which is proportional to molecular mass, and fast acquisition rates, we detect, and image individual membrane attached actin filaments diffusing within the acto-myosin network and follow individual myosin II filament dynamics. We quantify myosin II filament dwell times and processivity as functions of ATP concentration, providing experimental evidence for the predicted ensemble behavior of myosin head domains. Our results show how decreasing ATP concentrations lead to both increasing dwell times of individual myosin II filaments and a global change from a remodeling to a contractile state of the acto-myosin network

    One dimensional Si-in-Si(001) template for single-atom wire growth

    Full text link
    Single atom metallic wires of arbitrary length are of immense technological and scientific interest. We describe a novel silicon-only template enabling the self-organised growth of isolated micrometer long surface and subsurface single-atom chains. It consists of a one dimensional, defect-free reconstruction - the Haiku core, here revealed for the first time in details - self-assembled on hydrogenated Si(001) terraces, independent of any step edges. We discuss the potential of this Si-in-Si template as an appealing alternative to vicinal surfaces for nanoscale patterning.Comment: 3 pages, 2 figure

    Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response

    Get PDF
    Mycobacterium tuberculosis causes tuberculosis, which kills more people than any other infection. M. tuberculosis grows in macrophages, cells that specialize in engulfing and degrading microorganisms. Like many intracellular pathogens, in order to cause disease, M. tuberculosis damages the membrane-bound compartment (phagosome) in which it is enclosed after macrophage uptake. Recent work showed that when chemicals damage this type of intracellular compartment, cells rapidly detect and repair the damage, using machinery called the endosomal sorting complex required for transport (ESCRT). Therefore, we hypothesized that ESCRT might also respond to pathogen-induced damage. At the same time, our previous work showed that the EsxG-EsxH heterodimer of M. tuberculosis can inhibit ESCRT, raising the possibility that M. tuberculosis impairs this host response. Here, we show that ESCRT is recruited to damaged M. tuberculosis phagosomes and that EsxG-EsxH undermines ESCRT-mediated endomembrane repair. Thus, our studies demonstrate a battle between host and pathogen over endomembrane integrity.Intracellular pathogens have varied strategies to breach the endolysosomal barrier so that they can deliver effectors to the host cytosol, access nutrients, replicate in the cytoplasm, and avoid degradation in the lysosome. In the case of Mycobacterium tuberculosis, the bacterium perforates the phagosomal membrane shortly after being taken up by macrophages. Phagosomal damage depends upon the mycobacterial ESX-1 type VII secretion system (T7SS). Sterile insults, such as silica crystals or membranolytic peptides, can also disrupt phagosomal and endolysosomal membranes. Recent work revealed that the host endosomal sorting complex required for transport (ESCRT) machinery rapidly responds to sterile endolysosomal damage and promotes membrane repair. We hypothesized that ESCRTs might also respond to pathogen-induced phagosomal damage and that M. tuberculosis could impair this host response. Indeed, we found that ESCRT-III proteins were recruited to M. tuberculosis phagosomes in an ESX-1-dependent manner. We previously demonstrated that the mycobacterial effectors EsxG/TB9.8 and EsxH/TB10.4, both secreted by the ESX-3 T7SS, can inhibit ESCRT-dependent trafficking of receptors to the lysosome. Here, we additionally show that ESCRT-III recruitment to sites of endolysosomal damage is antagonized by EsxG and EsxH, both within the context of M. tuberculosis infection and sterile injury. Moreover, EsxG and EsxH themselves respond within minutes to membrane damage in a manner that is independent of calcium and ESCRT-III recruitment. Thus, our study reveals that T7SS effectors and ESCRT participate in a series of measures and countermeasures for control of phagosome integrity

    Modeling and simulation of phase-transitions in multicomponent aluminum alloy casting

    Get PDF
    The casting process of aluminum products involves the spatial distribution of alloying elements. It is essential that these elements are uniformly distributed in order to guarantee reliable and consistent products. This requires a good understanding of the main physical mechanisms that affect the solidification, in particular the thermodynamic description and its coupling to the transport processes of heat and mass that take place. The continuum modeling is reviewed and methods for handling the thermodynamics component of multi-element alloys are proposed. Savings in data-storage and computing costs on the order of 100 or more appear possible, when a combination of data-reduction and data-representation methods is used. To test the new approach a simplified model was proposed and shown to qualitatively capture the evolving solidification front

    Changes in Grass Quality of Coastal Meadows in Estonia

    Get PDF
    In Estonia the reason for reduction in coastal meadows and expansion of the stands of the common reed (Phragmites australis) is the discontinuation of traditional use of grasslands which were previously grazed and cut. Phragmites australis usually produces dense and monospecific stands at the waterline, where species richness is low. It can survive in ungrazed shore meadows, but it suffers from grazing (Tyler, 1969). The investigated Phragmitetum australis association had been influenced by grazing activities, but it remained rather sparse and due to that had relatively low productivity, reaching 3.11 t DM/ha. Traditionally coastal meadows have been used for grazing and have given stable quality of feed and good animal performance. The quality of fodder is an important factor for farms using the coastal areas for grazing. The aim of the study was to determine the changes in quality of the different plant associations in the coastal area
    corecore