1,621 research outputs found

    Local Nature of Coset Models

    Full text link
    The local algebras of the maximal Coset model C_max associated with a chiral conformal subtheory A\subset B are shown to coincide with the local relative commutants of A in B, provided A contains a stress energy tensor. Making the same assumption, the adjoint action of the unique inner-implementing representation U^A associated with A\subset B on the local observables in B is found to define net-endomorphisms of B. This property is exploited for constructing from B a conformally covariant holographic image in 1+1 dimensions which proves useful as a geometric picture for the joint inclusion A\vee C_max \subset B. Immediate applications to the analysis of current subalgebras are given and the relation to normal canonical tensor product subfactors is clarified. A natural converse of Borchers' theorem on half-sided translations is made accessible.Comment: 33 pages, no figures; typos, minor improvement

    Endotaxial Si nanolines in Si(001):H

    Full text link
    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure

    Structure of self-assembled Mn atom chains on Si(001)

    Get PDF
    Mn has been found to self-assemble into atomic chains running perpendicular to the surface dimer reconstruction on Si(001). They differ from other atomic chains by a striking asymmetric appearance in filled state scanning tunneling microscopy (STM) images. This has prompted complicated structural models involving up to three Mn atoms per chain unit. Combining STM, atomic force microscopy and density functional theory we find that a simple necklace-like chain of single Mn atoms reproduces all their prominent features, including their asymmetry not captured by current models. The upshot is a remarkably simpler structure for modelling the electronic and magnetic properties of Mn atom chains on Si(001).Comment: 5 pages, 4 figure

    One dimensional Si-in-Si(001) template for single-atom wire growth

    Full text link
    Single atom metallic wires of arbitrary length are of immense technological and scientific interest. We describe a novel silicon-only template enabling the self-organised growth of isolated micrometer long surface and subsurface single-atom chains. It consists of a one dimensional, defect-free reconstruction - the Haiku core, here revealed for the first time in details - self-assembled on hydrogenated Si(001) terraces, independent of any step edges. We discuss the potential of this Si-in-Si template as an appealing alternative to vicinal surfaces for nanoscale patterning.Comment: 3 pages, 2 figure

    Dynamical constraints on some orbital and physical properties of the WD0137-349 A/B binary system

    Full text link
    In this paper I deal with the WD0137-349 binary system consisting of a white dwarf (WD) and a brown dwarf (BD) in a close circular orbit of about 116 min. I, first, constrain the admissible range of values for the inclination i by noting that, from looking for deviations from the third Kepler law, the quadrupole mass moment Q would assume unlikely large values, incompatible with zero at more than 1-sigma level for i 43 deg. Then, by conservatively assuming that the most likely values for i are those that prevent such an anomalous behavior of Q, i.e. those for which the third Kepler law is an adequate modeling of the orbital period, I obtain i=39 +/- 2 deg. Such a result is incompatible with the value i=35 deg quoted in literature by more than 2 sigma. Conversely, it is shown that the white dwarf's mass range obtained from spectroscopic measurements is compatible with my experimental range, but not for i=35 deg. As a consequence, my estimate of ii yields an orbital separation of a=(0.59 +/- 0.05)R_Sun and an equilibrium temperature of BD of T_eq=(2087 +/- 154)K which differ by 10% and 4%, respectively, from the corresponding values for i=35 deg.Comment: LaTex2e, 11 pages, 3 figures, no tables. It refers to gr-qc/0611126 and better clarify the result obtained there. Accepted by Astrophysics and Space Scienc

    Modeling and simulation of phase-transitions in multicomponent aluminum alloy casting

    Get PDF
    The casting process of aluminum products involves the spatial distribution of alloying elements. It is essential that these elements are uniformly distributed in order to guarantee reliable and consistent products. This requires a good understanding of the main physical mechanisms that affect the solidification, in particular the thermodynamic description and its coupling to the transport processes of heat and mass that take place. The continuum modeling is reviewed and methods for handling the thermodynamics component of multi-element alloys are proposed. Savings in data-storage and computing costs on the order of 100 or more appear possible, when a combination of data-reduction and data-representation methods is used. To test the new approach a simplified model was proposed and shown to qualitatively capture the evolving solidification front

    Cognitive Loads and Training Success in a Video-Based Online Training Course

    Get PDF
    Background: According to research based on cognitive load theory, the way of presenting information in an instructional environment is essential to the learning outcome. By avoiding unnecessary extraneous load caused by badly designed instructions and other sources, learners are more likely to successfully construct knowledge. In addition, learner characteristics are known to affect learning. Objective: This study explores the effects of learners’ online learning experience, domain-specific prior knowledge, computer attitude and computer anxiety on their perceived intrinsic, extraneous and germane load and on their learning outcome in a video-based training course about media design for employees. Method and Results: Learning outcome was assessed by ratings of subjective learning success, ratings of professional competence, the number of completed modules and performance. None of the learning outcome variables could be modelled when entering learner characteristics in a regression analysis, but all could be modelled using the cognitive load ratings. Conclusion: Thus, extraneous, intrinsic and germane load were the most important factors for explaining the learning outcome. This result points to the importance of instructional design and particularly to managing cognitive load in online training scenarios

    Measurement of the β\beta-asymmetry parameter of 67^{67}Cu in search for tensor type currents in the weak interaction

    Full text link
    Precision measurements at low energy search for physics beyond the Standard Model in a way complementary to searches for new particles at colliders. In the weak sector the most general β\beta decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β\beta decay are on the level of several percent. The goal of this paper is extracting new information on tensor coupling constants by measuring the β\beta-asymmetry parameter in the pure Gamow-Teller decay of 67^{67}Cu, thereby testing the V-A structure of the weak interaction. An iron sample foil into which the radioactive nuclei were implanted was cooled down to milliKelvin temperatures in a 3^3He-4^4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β\beta radiation was observed with planar high purity germanium detectors operating at a temperature of about 10\,K. An on-line measurement of the β\beta asymmetry of 68^{68}Cu was performed as well for normalization purposes. Systematic effects were investigated using Geant4 simulations. The experimental value, A~\tilde{A} = 0.587(14), is in agreement with the Standard Model value of 0.5991(2) and is interpreted in terms of physics beyond the Standard Model. The limits obtained on possible tensor type charged currents in the weak interaction hamiltonian are -0.045 <(CT+CT)/CA<< (C_T+C'_T)/C_A < 0.159 (90\% C.L.). The obtained limits are comparable to limits from other correlation measurements in nuclear β\beta decay and contribute to further constraining tensor coupling constants
    corecore