7 research outputs found

    Extra-weakly Interacting Dark Matter

    Get PDF
    We investigate a new type of dark matter with couplings to ordinary matter naturally suppressed by at least one order of magnitude compared to weak interactions. Despite the extra-weak interactions massive particles of this type (XWIMPs) can satisfy the WMAP relic density constraints due to coannihilation if their masses are close to that of the lightest state of the MSSM. The region in the parameter space of a suitably extended mSUGRA model consistent with the WMAP3 constraints on XWIMPs is determined. Plots for sparticles masses are given which can be subject to test at the LHC. We also discuss the sensitivity of the analysis to the top mass. As an example for an explicit model we show that such a form of dark matter can arise in certain ZZ' extensions of the MSSM. Specifically we consider an abelian extension with spontaneous gauge symmetry breaking via Fayet-Iliopoulos D-terms in the hidden sector. The LSP of the full model arises from the extra U(1)XU(1)_X sector with extra-weak couplings to Standard Model particles due to experimental constraints. With R-parity conservation the new XWIMP is a candidate for cold dark matter. In a certain limit the model reduces to the \st extension of the MSSM without a Higgs mechanism, and wider ranges of models with similar characteristics are easy to construct

    R-parity Conservation via the Stueckelberg Mechanism: LHC and Dark Matter Signals

    Get PDF
    We investigate the connection between the conservation of R-parity in supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L vector gauge boson. It is shown that with universal boundary conditions for soft terms of sfermions in each family at the high scale and with the Stueckelberg mechanism for generating mass for the B-L gauge boson present in the theory, electric charge conservation guarantees the conservation of R-parity in the minimal B-L extended supersymmetric standard model. We also discuss non-minimal extensions. This includes extensions where the gauge symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a hidden sector gauge group. In this case the presence of the additional U(1)_X allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV region overcoming the multi-TeV LEP constraints. The possible tests of the models at colliders and in dark matter experiments are analyzed including signals of a low mass Z' resonance and the production of spin zero bosons and their decays into two photons. In this model two types of dark matter candidates emerge which are Majorana and Dirac particles. Predictions are made for a possible simultaneous observation of new physics events in dark matter experiments and at the LHC.Comment: 38 pages, 7 fig

    Intersecting Brane Worlds -- A Path to the Standard Model ?

    Full text link
    In this review we describe the general geometrical framework of brane world constructions in orientifolds of type IIA string theory with D6-branes wrapping 3-cycles in a Calabi-Yau 3-fold. These branes generically intersect in points on the internal space, and the patterns of intersections govern the chiral fermion spectra. We discuss how the open string spectra in intersecting brane models are constructed, how the Standard Model can be embedded, and also how supersymmetry can be realized in this class of string vacua. After the general considerations we specialize the discussion to the case of orbifold backgrounds with intersecting D6-branes and to the quintic Calabi-Yau manifold. Then, we discuss parts of the effective action of intersecting brane world models. Specifically we compute from the Born-Infeld action of the wrapped D-branes the tree-level, D-term scalar potential, which is important for the stability of the considered backgrounds as well as for questions related to supersymmetry breaking. Second, we review the recent computation concerning of gauge coupling unification and also of one-loop gauge threshold corrections in intersecting brane world models. Finally we also discuss some aspects of proton decay in intersecting brane world models.Comment: 31 pages, To appear in the proceedings of the RTN-workshop ``The quantum structure of spacetime and the geometric nature of fundamental interactions'', September 2003 in Copenhagen, revised version contains new refs and one corrected equatio
    corecore