26 research outputs found

    Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model

    Get PDF
    The unique microenvironment of the prostate plays a crucial role in the development and progression of prostate cancer (PCa). We examined the effects of cancer-associated fibroblasts (CAFs) on PCa progression using patient-derived fibroblast primary cultures in a representative orthotopic xenograft model. Primary cultures of CAFs, non-cancer-associated fibroblasts (NCAFs) and benign prostate hyperplasia-associated fibroblasts (BPHFs) were generated from patient-derived tissue specimens. These fibroblasts were coinjected together with cancer cells (LuCaP136 spheroids or LNCaP cells) in orthotopic PCa xenografts to investigate their effects on local and systemic tumor progression. Primary tumor growth as well as metastatic spread to lymph nodes and lungs were significantly stimulated by CAF coinjection in LuCaP136 xenografts. When NCAFs or BPHFs were coinjected, tumor progression was similar to injection of tumor cells alone. In LNCaP xenografts, all three fibroblast types significantly stimulated primary tumor progression compared to injection of LNCaP cells alone. CAF coinjection further increased the frequency of lymph node and lung metastases. This is the first study using an orthotopic spheroid culture xenograft model to demonstrate a stimulatory effect of patient-derived CAFs on PCa progression. The established experimental setup will provide a valuable tool to further unravel the interacting mechanisms between PCa cells and their microenvironment

    Antagonizing Sec62 function in intracellular Ca2+ homeostasis represents a novel therapeutic strategy for head and neck cancer

    Get PDF
    Various cancer types including head and neck squamous cell carcinomas (HNSCC) show a frequent amplification of chromosomal region 3q26 that encodes, among others, for the SEC62 gene. Located in the ER membrane, this translocation protein is known to play a critical role as a potential driver oncogene in cancer development. High SEC62 expression levels were observed in various cancer entities and were associated with a poor outcome and increased metastatic burden. Because of its intracellular localization the SEC62 protein is poorly accessible for therapeutic antibodies, therefore a functional SEC62 knockdown represents the most promising mechanism of a potential antineoplastic targeted therapy. By stimulating the Ca2+ efflux from the ER lumen and thereby increasing cellular stress levels, a functional inhibition of SEC62 bears the potential to limit tumor growth and metastasis formation. In this study, two potential anti-metastatic and -proliferative agents that counteract SEC62 function were investigated in functional in vitro assays by utilizing an immortalized human hypopharyngeal cancer cell line as well as a newly established orthotopic murine in vivo model. Additionally, a CRISPR/ Cas9 based SEC62 knockout HNSCC cell line was generated and functionally characterized for its relevance in HNSCC cell proliferation and migration as well as sensitivity to SEC62 targeted therapy in vitro

    Erythropoietin accelerates the revascularization of transplanted pancreatic islets

    Get PDF
    Background and Purpose Pancreatic islet transplantation is a promising therapeutic approach for Type 1 diabetes. A major prerequisite for the survival of grafted islets is a rapid revascularization after transplantation. Erythropoietin (EPO), the primary regulator of erythropoiesis, has been shown to promote angiogenesis. Therefore, we investigated in this study whether EPO improves the revascularization of transplanted islets. Experimental Approach Islets from FVB/N mice were transplanted into dorsal skinfold chambers of recipient animals, which were daily treated with an intraperitoneal injection of EPO (500 IU·kg−1) or vehicle (control) throughout an observation period of 14 days. In a second set of experiments, animals were only pretreated with EPO over a 6‐day period prior to islet transplantation. The revascularization of the grafts was assessed by repetitive intravital fluorescence microscopy and immunohistochemistry. In addition, a streptozotocin‐induced diabetic mouse model was used to study the effect of EPO‐pretreatment on the endocrine function of the grafts. Key Results EPO treatment slightly accelerated the revascularization of the islet grafts. This effect was markedly more pronounced in EPO‐pretreated animals, resulting in significantly higher numbers of engrafted islets and an improved perfusion of endocrine tissue without affecting systemic haematocrit levels when compared with controls. Moreover, EPO‐pretreatment significantly accelerated the recovery of normoglycaemia in diabetic mice after islet transplantation. Conclusion and Implications These findings demonstrate that, particularly, short‐term EPO‐pretreatment represents a promising therapeutic approach to improve the outcome of islet transplantation, without an increased risk of thromboembolic events

    Time- and temperature-dependent postmortem concentration changes of the (synthetic) cannabinoids JWH-210, RCS-4, as well as ∆9-tetrahydrocannabinol following pulmonary administration to pigs

    Get PDF
    In forensic toxicology, interpretation of postmortem (PM) drug concentrations might be complicated due to the lack of data concerning drug stability or PM redistribution (PMR). Regarding synthetic cannabinoids (SC), only sparse data are available, which derived from single case reports without any knowledge of dose and time of consumption. Thus, a controlled pig toxicokinetic study allowing for examination of PMR of SC was performed. Twelve pigs received a pulmonary dose of 200 µg/kg BW each of 4-ethylnaphthalene-1-yl-(1-pentylindole-3-yl)methanone (JWH-210), 2-(4-methoxyphenyl)-1-(1-pentyl-indole-3-yl)methanone (RCS-4), and Δ9-tetrahydrocannabinol via an ultrasonic nebulizer. Eight hours after, the pigs were put to death with T61 and specimens of relevant tissues and body fluids were collected. Subsequently, the animals were stored at room temperature (n = 6) or 4 °C (n = 6) and further samples were collected after 24, 48, and 72 h each. Concentrations were determined following enzymatic cleavage and solid-phase extraction by liquid-chromatography tandem mass spectrometry applying the standard addition approach. High concentrations of the parent compounds were observed in lung, liver, kidney and bile fluid/duodenum content as well as brain. HO-RCS-4 was the most prevalent metabolite detected in PM specimens. In general, changes of PM concentrations were found in every tissue and body fluid depending on the PM interval as well as storage temperature

    Is adipose tissue suitable for detection of (synthetic) cannabinoids? A comparative study analyzing antemortem and postmortem specimens following pulmonary administration of JWH-210, RCS-4, as well as ∆9-tetrahydrocannabinol to pigs

    Get PDF
    Examining fatal poisonings, chronic exposure may be refected by the concentration in tissues known for long-term storage of drugs. Δ9-tetrahydrocannabinol (THC) persists in adipose tissue (AT), but sparse data on synthetic cannabinoids (SC) are available. Thus, a controlled pig study evaluating antemortem (AM) disposition and postmortem (PM) concentration changes of the SC 4-ethylnaphthalene-1-yl-(1-pentylindole-3-yl)methanone (JWH-210) and 2-(4-methoxyphenyl)-1-(1-pentyl-indole3-yl)methanone (RCS-4) as well as THC in AT was performed. The drugs were administered pulmonarily (200 µg/kg body weight) to twelve pigs. Subcutaneous (s.c.) AT specimens were collected after 15 and 30 min and then hourly up to 8 h. At the end, pigs were sacrifced and s.c., perirenal, and dorsal AT specimens were collected. The carcasses were stored at room temperature (RT; n=6) or 4 °C (n=6) and specimens were collected after 24, 48, and 72 h. After homogenization in acetonitrile and standard addition, LC–MS/MS was performed. Maximum concentrations were reached 0.5–2 h after administration amounting to 21±13 ng/g (JWH-210), 24±13 ng/g (RCS-4), and 22±20 ng/g (THC) and stayed at a plateau level. Regarding the metabolites, very low concentrations of N-hydroxypentyl-RCS-4 (HO-RCS-4) were detected from 0.5 to 8 h. PM concentrations of parent compounds did not change signifcantly (p>0.05) over time under both storage conditions. Concentrations of HO-RCS-4 signifcantly (p<0.05) increased in perirenal AT during storage at RT. These results suggest a rapid distribution and persistence in s.c. AT. Furthermore, AT might be resistant to PM redistribution of parent compounds. However, signifcant PM increases of metabolite concentrations might be considered in perirenal AT

    Suppression of endothelial miR-22 mediates non-small cell lung cancer cell-induced angiogenesis

    Get PDF
    MicroRNAs (miRNAs) expressed in endothelial cells (ECs) are powerful regulators of angiogenesis, which is essential for tumor growth and metastasis. Here, we demonstrated that miR-22 is preferentially and highly expressed in ECs, while its endothelial level is significantly downregulated in human non-small cell lung cancer (NSCLC) tissues when compared to matched nontumor lung tissues. This reduction of endothelial miR-22 is possibly induced by NSCLC cell-secreted interleukin-1b and subsequently activated transcription factor nuclear factor-kB. Endothelial miR-22 functions as a potent angiogenesis inhibitor that inhibits all of the key angiogenic activities of ECs and consequently NSCLC growth through directly targeting sirtuin 1 and fibroblast growth factor receptor 1 in ECs, leading to inactivation of AKT/mammalian target of rapamycin signaling. These findings provide insight into the molecular mechanisms of NSCLC angiogenesis and indicate that endothelial miR-22 represents a potential target for the future antiangiogenic treatment of NSCLC

    IGF2 mRNA Binding Protein 2 Transgenic Mice Are More Prone to Develop a Ductular Reaction and to Progress Toward Cirrhosis

    Get PDF
    The insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs/IGF2BPs) IMP1 and 3 are regarded as oncofetal proteins, whereas the hepatic IMP2 expression in adults is controversially discussed. The splice variant IMP2-2/p62 promotes steatohepatitis and hepatocellular carcinoma. Aim of this study was to clarify whether IMP2 is expressed in the adult liver and influences progression toward cirrhosis. IMP2 was expressed at higher levels in embryonic compared to adult tissues as quantified in embryonic, newborn, and adult C57BL/6J mouse livers and suggested by analysis of publicly available human data. In an IMP2-2 transgenic mouse model microarray and qPCR analyses revealed increased expression of liver progenitor cell (LPC) markers Bex1, Prom1, Spp1, and Cdh1 indicating a de-differentiated liver cell phenotype. Induction of these LPC markers was confirmed in human cirrhotic tissue datasets. The LPC marker SPP1 has been described to play a major role in fibrogenesis. Thus, DNA methylation was investigated in order to decipher the regulatory mechanism of Spp1 induction. In IMP2-2 transgenic mouse livers single CpG sites were differentially methylated, as quantified by amplicon sequencing, whereas human HCC samples of a human publicly available dataset showed promoter hypomethylation. In order to study the impact of IMP2 on fibrogenesis in the context of steatohepatitis wild-type or IMP2-2 transgenic mice were fed either a methionine-choline deficient (MCD) or a control diet for 2-12 weeks. MCD-fed IMP2-2 transgenic mice showed a higher incidence of ductular reaction (DR), accompanied by hepatic stellate cell activation, extracellular matrix (ECM) deposition, and induction of the LPC markers Spp1, Cdh1, and Afp suggesting the occurrence of de-differentiated cells in transgenic livers. In human cirrhotic samples IMP2 overexpression correlated with LPC marker and ECM component expression. Progression of liver disease was induced by combined MCD and diethylnitrosamine (DEN) treatment. Combined MCD-DEN treatment resulted in shorter survival of IMP2-2 transgenic compared to wild-type mice. Only IMP2-2 transgenic livers progressed to cirrhosis, which was accompanied by strong DR. In conclusion, IMP2 is an oncofetal protein in the liver that promotes DR characterized by de-differentiated cells toward steatohepatitis-associated cirrhosis development with poor survival

    Improvement of islet transplantation by the fusion of islet cells with functional blood vessels

    Get PDF
    Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the β-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation

    Short-term molecular and cellular effects of ischemia/reperfusion on vascularized lymph node flaps in rats

    Get PDF
    Vascularized lymph node (VLN) transfer is an emerging strategy to re-establish lymphatic drainage in chronic lymphedema. However, the biological processes underlying lymph node integration remain elusive. This study introduces an experimental approach facilitating the analysis of short-term molecular and cellular effects of ischemia/reperfusion on VLN flaps. Lymph node flaps were dissected pedicled on the lateral thoracic vessels in 44 Lewis rats. VLN flaps were exposed to 45 or 120 minutes ischemia by in situ clamping of the vascular pedicle with subsequent reperfusion for 24 hours. Flaps not exposed to ischemia/reperfusion served as controls. Lymph nodes and the perinodal adipose tissue were separately analyzed by Western blot for the expression of lymphangiogenic and angiogenic growth factors. Moreover, morphology, microvessel density, proliferation, apoptosis and immune cell infiltration of VLN flaps were further assessed by histology and immunohistochemistry. Ischemia for 120 minutes was associated with a markedly reduced cellularity of lymph nodes but not of the perinodal adipose tissue. In line with this, ischemic lymph nodes exhibited a significantly lower microvessel density and an increased expression of VEGF-D and VEGF-A. However, VEGF-C expression was not upregulated. In contrast, analyses of the perinodal adipose tissue revealed a more subtle decrease of microvessel density, while only the expression of VEGF-D was increased. Moreover, after 120 minutes ischemia, lymph nodes but not the perinodal adipose tissue exhibited significantly higher numbers of proliferating and apoptotic cells as well as infiltrated macrophages and neutrophilic granulocytes compared with non-ischemic flaps. Taken together, lymph nodes of VLN flaps are highly susceptible to ischemia/reperfusion injury. In contrast, the perinodal adipose tissue is less prone to ischemia/reperfusion injury

    C-kit+ resident cardiac stem cells improve left ventricular fibrosis in pressure overload

    Get PDF
    To investigate the effect of resident cardiac stem cells (RCSC) on myocardial remodeling, c-kit+ RCSC were isolated from hearts of C57Bl/6-Tg (ACTb-EGFP)1Osb/J mice expressing green fluorescent protein and expanded in vitro. C57/Bl6N wildtype mice were subjected to transverse aortic constriction (TAC, 360 μm) or sham-operation. 5 × 105 c-kit+ RCSC or c-kit− cardiac cells or cell buffer were infused intravenously 24 h post-surgery (n = 11–24 per group). Hypoxia-inducible factor-1α-mRNA in left ventricles of TAC mice was enhanced 24 h after transplantation. 35 days post-TAC, the density of c-kit+ RCSC in the myocardium was increased by two-fold. Infusion of c-kit+ resident cardiac stem cells post-TAC markedly reduced myocardial fibrosis and the expression of collagen Iα2 and connective tissue growth factor. Infusion of c-kit− cardiac cells did not ameliorate cardiac fibrosis. In parallel, expression of pro-angiogenic mediators (FGFb, IL-4, IL-6, TGFß, leptin) and the density of CD31+ and CD31+ GFP+ endothelial cells were increased. Transplantation reduced brain- and atrial natriuretic peptides and the cardiomyocyte cross-sectional area. Infusion of c-kit+ resident cardiac stem reduced the rate of apoptosis and oxidative stress in cardiomyocytes and in non-cardiomyocyte cells
    corecore