723 research outputs found
Recommended from our members
What is the climate system able to do ‘on its own’?
The climate of the Earth, like planetary climates in general, is broadly controlled by solar irradiation, planetary albedo and emissivity as well as its rotation rate and distribution of land (with its orography) and oceans. However, the majority of climate fluctuations that affect mankind are internal modes of the general circulation of the atmosphere and the oceans. Some of these modes, such as El Nino-Southern Oscillation (ENSO), are quasi-regular and have some longer-term predictive skill; others like the Arctic and Antarctic Oscillation are chaotic and generally unpredictable beyond a few weeks. Studies using general circulation models indicate that internal processes dominate the regional climate and that some like ENSO events have even distinct global signatures. This is one of the reasons why it is so difficult to separate internal climate processes from external ones caused, for example, by changes in greenhouse gases and solar irradiation. However, the accumulation of the warmest seasons during the latest two decades is lending strong support to the forcing of the greenhouse gases. As models are getting more comprehensive, they show a gradually broader range of internal processes including those on longer time scales, challenging the interpretation of the causes of past and present climate events further
NaV_2O_5 as an Anisotropic t-J Ladder at Quarter Filling
Based on recent experimental evidences that the electronic charge degrees of
freedom plays an essential role in the spin-Peierls--like phase transition of
NaVO, we first make the mapping of low-energy electronic states of the
model for NaVO to the quarter-filled ladder with
anisotropic parameter values between legs and rungs, and then show that this
anisotropic ladder is in the Mott insulating state, of which
lowest-energy states can be modeled by the one-dimensional Heisenberg
antiferromagnet with the effective exchange interaction whose value
is consistent with experimental estimates. We furthermore examine the coupling
between the ladders as the trellis lattice model and show that the
nearest-neighbor Coulomb repulsion on the zigzag-chain bonds can lead to the
instability in the charge degrees of freedom of the ladders.Comment: 4 pages, 5 gif figures. Fig.3 corrected. Hardcopies of figures (or
the entire manuscript) can be obtained by e-mail request to
[email protected]
A Model Study of the Low-Energy Charge Dynamics of NaV_2O_5
An exact-diagonalization technique on small clusters is used to calculate the
dynamical density correlation functions of the dimerized t-J chain and coupled
anisotropic t-J ladders (trellis lattice) at quarter filling, i.e., the systems
regarded as a network of pairs (dimers or rungs) of sites coupled weakly via
the hopping and exchange interactions. We thereby demonstrate that the
intersite Coulomb repulsions between the pairs induce a low-energy collective
mode in the charge excitations of the systems where the internal charge degrees
of freedom of the pairs play an essential role. Implications to the electronic
states of NaV_2O_5, i.e., fluctuations of the valence state of V ions and phase
transition as a charge ordering, are discussed.Comment: 4 pages, 4 gif figures. Hardcopies of figures (or the entire
manuscript) can be obtained by e-mail request to [email protected]
Zigzag Charge Ordering in alpha'-NaV2O5
23Na NMR spectrum measurements in alpha'-NaV2O5 with a single- crystalline
sample are reported. In the charge-ordered phase, the number of inequivalent Na
sites observed is more than that expected from the low-temperature structures
of space group Fmm2 reported so far. This disagreement indicates that the real
structure including both atomic displacement and charge disproportionation is
of lower symmetry. It is suggested that zigzag ordering is the most probable.
The temperature variation of the NMR spectra near the transition temperature is
incompatible with that of second-order transitions. It is thus concluded that
the charge ordering transition is first-order.Comment: 4 pages, 5 eps figures, submitted to J. Phys. Soc. Jp
Low-Temperature Structure of the Quarter-Filled Ladder Compound alpha'-NaV2O5
The low-temperature (LT) superstructure of -NaVO was
determined by synchrotron radiation x-ray diffraction. Below the phase
transition temperature associated with atomic displacement and charge ordering
at 34K, we observed the Bragg peak splittings, which evidence that the LT
structure is monoclinic. It was determined that the LT structure is
with the space group where and
represent the high temperature orthorhombic unit cell. The valence estimation
of V ions according to the bond valence sum method shows that the V sites are
clearly separated into two groups of V and V with a
charge ordering pattern. This LT structure is consistent with resonant x-ray
and NMR measurements, and strikingly contrasts to the LT structure previously
reported, which includes V sites.Comment: 4 pages, 3 figures, 1 tabl
- …