8,919 research outputs found
Improving Trip- and Slip-Resisting Skills in Older People: Perturbation Dose Matters
Aging negatively affects balance recovery responses after trips and slips. We hypothesize that older people can benefit from brief treadmill-based trip and slip perturbation exposure despite reduced muscular capacities, but with neuropathology, their responsiveness to these perturbations will be decreased. Thus, to facilitate long-term benefits and their generalizability to everyday life, one needs to consider the individual threshold for perturbation dose.
This is a non-final version of an article published in final form in Exercise and Sport Sciences Review
Disorder-Induced Multiple Transition involving Z2 Topological Insulator
Effects of disorder on two-dimensional Z2 topological insulator are studied
numerically by the transfer matrix method. Based on the scaling analysis, the
phase diagram is derived for a model of HgTe quantum well as a function of
disorder strength and magnitude of the energy gap. In the presence of sz
non-conserving spin-orbit coupling, a finite metallic region is found that
partitions the two topologically distinct insulating phases. As disorder
increases, a narrow-gap topologically trivial insulator undergoes a series of
transitions; first to metal, second to topological insulator, third to metal,
and finally back to trivial insulator. We show that this multiple transition is
a consequence of two disorder effects; renormalization of the band gap, and
Anderson localization. The metallic region found in the scaling analysis
corresponds roughly to the region of finite density of states at the Fermi
level evaluated in the self-consistent Born approximation.Comment: 5 pages, 5 figure
Quantum tunneling through planar p-n junctions in HgTe quantum wells
We demonstrate that a p-n junction created electrically in HgTe quantum wells
with inverted band-structure exhibits interesting intraband and interband
tunneling processes. We find a perfect intraband transmission for electrons
injected perpendicularly to the interface of the p-n junction. The opacity and
transparency of electrons through the p-n junction can be tuned by changing the
incidence angle, the Fermi energy and the strength of the Rashba spin-orbit
interaction. The occurrence of a conductance plateau due to the formation of
topological edge states in a quasi-one-dimensional p-n junction can be switched
on and off by tuning the gate voltage. The spin orientation can be
substantially rotated when the samples exhibit a moderately strong Rashba
spin-orbit interaction.Comment: 4 pages, 4 figure
The classical capacity of quantum thermal noise channels to within 1.45 bits
We find a tight upper bound for the classical capacity of quantum thermal
noise channels that is within bits of Holevo's lower bound. This
lower bound is achievable using unentangled, classical signal states, namely
displaced coherent states. Thus, we find that while quantum tricks might offer
benefits, when it comes to classical communication they can only help a bit.Comment: Two pages plus a bi
Diversity of chemistry and excitation conditions in the high-mass star forming complex W33
The object W33 is a giant molecular cloud that contains star forming regions
at various evolutionary stages from quiescent clumps to developed H II regions.
Since its star forming regions are located at the same distance and the primary
material of the birth clouds is probably similar, we conducted a comparative
chemical study to trace the chemical footprint of the different phases of
evolution. We observed six clumps in W33 with the Atacama Pathfinder Experiment
(APEX) telescope at 280 GHz and the Submillimeter Array (SMA) at 230 GHz. We
detected 27 transitions of 10 different molecules in the APEX data and 52
transitions of 16 different molecules in the SMA data. The chemistry on scales
larger than 0.2 pc, which are traced by the APEX data, becomes more
complex and diverse the more evolved the star forming region is. On smaller
scales traced by the SMA data, the chemical complexity and diversity increase
up to the hot core stage. In the H II region phase, the SMA spectra resemble
the spectra of the protostellar phase. Either these more complex molecules are
destroyed or their emission is not compact enough to be detected with the SMA.
Synthetic spectra modelling of the HCO transitions, as detected with the
APEX telescope, shows that both a warm and a cold component are needed to
obtain a good fit to the emission for all sources except for W33 Main1. The
temperatures and column densities of the two components increase during the
evolution of the star forming regions. The integrated intensity ratios
NH(32)/CS(65) and
NH(32)/HCO(43) show clear trends as a
function of evolutionary stage, luminosity, luminosity-to-mass ratio, and
H peak column density of the clumps and might be usable as chemical
clocks.Comment: 66 pages, 28 figures, 8 tables, accepted for publication at A&
- …