38 research outputs found

    Closed loop control in network monitoring

    Get PDF
    Closed loop control in network monitorin

    Bid participates in genotoxic drug-induced apoptosis of HeLa cells and is essential for death receptor ligands' apoptotic and synergistic effects

    Get PDF
    Background: The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings: To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance: Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling

    What does it take to consent to islet cell xenotransplantation?

    Get PDF
    BACKGROUND The transplantation of porcine islet cells provides a new potential therapy to treat patients with type 1 diabetes mellitus (T1DM). Compared to other biomedical technologies, xenotransplantation stands out in terms of its involvement of animals as graft sources, as well as the possible transmission of infectious diseases. As these aspects are especially relevant for potential xenotransplantation recipients, it is important to assess their opinion regarding this technology, in particular in terms of the requirements that should be met in the informed consent process for xenotransplantation. METHODS We conducted qualitative interviews with seven T1DM patients to assess their information needs prior to xenotransplantation. Before the interview, the participants received a model informed consent form for a clinical trial with porcine islet cells transplantation. The interviews were transcribed and analysed using qualitative content analysis. RESULTS In the interviews, we identified several requirements that are crucial for patients with T1DM in order to consider xenotransplantation as a potential treatment option: therapy-related requirements, professional care and supervision, successful behaviour and attitude management, improving quality of life, and managing control/self-determination challenges. Regarding the informed consent form, several of the participants' questions remained open and should be addressed in more detail. The interviewees stressed the importance of personal consultations. CONCLUSIONS To become a sustainable therapeutic option, patients especially expected an improved diabetes control and a reduction of diabetes-related burdens. Health-related aspects prove to be pivotal for diabetic patients when considering porcine islet cell transplantation. The use of pigs as source for organ retrievals was not considered as problematic

    TGF-β1 activates two distinct type I receptors in neurons: implications for neuronal NF-κB signaling

    Get PDF
    Transforming growth factor-βs (TGF-βs) are pleiotropic cytokines involved in development and maintenance of the nervous system. In several neural lesion paradigms, TGF-β1 exerts potent neuroprotective effects. Neurons treated with TGF-β1 activated the canonical TGF-β receptor I/activin-like kinase receptor 5 (ALK5) pathway. The transcription factor nuclear factor-κB (NF-κB) plays a fundamental role in neuroprotection. Treatment with TGF-β1 enhanced NF-κB activity in gelshift and reporter gene analyses. However, ectopic expression of a constitutively active ALK5 failed to mimic these effects. ALK1 has been described as an alternative TGF-β receptor in endothelial cells. Interestingly, we detected significant basal expression of ALK1 and its injury-induced up-regulation in neurons. Treatment with TGF-β1 also induced a pronounced increase in downstream Smad1 phosphorylation. Overexpression of a constitutively active ALK1 mimicked the effect of TGF-β1 on NF-κB activation and neuroprotection. Our data suggest that TGF-β1 simultaneously activates two distinct receptor pathways in neurons and that the ALK1 pathway mediates TGF-β1–induced NF-κB survival signaling

    Gene expression during ER stress–induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway

    Get PDF
    Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of ischemic and neurodegenerative disorders. Treatment of human SH-SY5Y neuroblastoma cells with tunicamycin, an inhibitor of protein glycosylation, rapidly induced the expression of target genes of the unfolded protein response. However, prolonged treatment also triggered a delayed, caspase-dependent cell death. Microarray analysis of gene expression changes during tunicamycin-induced apoptosis revealed that the Bcl-2 homology domain 3-only family member, Bcl-2 binding component 3/p53 upregulated modulator of apoptosis (Bbc3/PUMA), was the most strongly induced pro-apoptotic gene. Expression of Bbc3/PUMA correlated with a Bcl-xL–sensitive release of cytochrome c and the activation of caspase-9 and -3. Increased expression of Bbc3/PUMA was also observed in p53-deficient human cells, in response to the ER stressor thapsigargin, and in rat hippocampal neurons after transient forebrain ischemia. Overexpression of Bbc3/PUMA was sufficient to trigger apoptosis in SH-SY5Y neuroblastoma cells, and human cells deficient in Bbc3/PUMA showed dramatically reduced apoptosis in response to ER stress. Our data suggest that the transcriptional induction of Bbc3/PUMA may be sufficient and necessary for ER stress–induced apoptosis

    Bid Participates in Genotoxic Drug-Induced Apoptosis of HeLa Cells and Is Essential for Death Receptor Ligands' Apoptotic and Synergistic Effects

    Get PDF
    Background: The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings: To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance: Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling

    Dissipation of potassium and proton gradients inhibits mitochondrial hyperpolarization and cytochrome c release during neural apoptosis.

    Get PDF
    Exposure of rat hippocampal neurons or human D283 medulloblastoma cells to the apoptosis-inducing kinase inhibitor staurosporine induced rapid cytochrome c release from mitochondria and activation of the executioner caspase-3. Measurements of cellular tetramethylrhodamine ethyl ester fluorescence and subsequent simulation of fluorescence changes based on Nernst calculations of fluorescence in the extracellular, cytoplasmic, and mitochondrial compartments revealed that the release of cytochrome c was preceded by mitochondrial hyperpolarization. Overexpression of the anti-apoptotic protein Bcl-xL, but not pharmacological blockade of outward potassium currents, inhibited staurosporine-induced hyperpolarization and apoptosis. Dissipation of mitochondrial potassium and proton gradients by valinomycin or carbonyl cyanide p-trifluoromethoxy-phenylhydrazone also potently inhibited staurosporine-induced hyperpolarization, cytochrome c release, and caspase activation. This effect was not attributable to changes in cellular ATP levels. Prolonged exposure to valinomycin induced significant matrix swelling, and per se also caused release of cytochrome c from mitochondria. In contrast to staurosporine, however, valinomycin-induced cytochrome c release and cell death were not associated with caspase-3 activation and insensitive to Bcl-xL overexpression. Our data suggest two distinct mechanisms for mitochondrial cytochrome c release: (1) active cytochrome c release associated with early mitochondrial hyperpolarization, leading to neuronal apoptosis, and (2) passive cytochrome c release secondary to mitochondrial depolarization and matrix swelling

    The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion

    Get PDF
    Poster presentation: Here we investigated the role of the amyloid precursor protein (APP) in regulation of Ca2+ store depletion-induced neural cell death. Ca2+ store depletion from the endoplasmic reticulum (ER) was induced by the SERCA (Sarco/Endoplasmic Reticulum Calcium ATPase) inhibitor thapsigargin which led to a rapid induction of the unfolded protein response (UPR) and a delayed activation of executioner caspases in the cultures. Overexpression of APP potently enhanced cytosolic Ca2+ levels and cell death after ER Ca2+ store depletion in comparison to vector-transfected controls. GeneChipR and RT-PCR analysis revealed that the expression of classical UPR chaperone genes was not altered by overexpression of APP.Interestingly, the induction of the ER stress-responsive pro-apoptotic transcription factor CHOP was significantly upregulated in APP-overexpressing cells in comparison to vectortransfected controls. Chelation of intracellular Ca2+ with BAPTA-AM revealed that enhanced CHOP expression after store depletion occured in a Ca2+-dependent manner in APPoverexpressing cells. Prevention of CHOP induction by BAPTA-AM and by RNA interference was also able to abrogate the potentiating effect of APP on thapsigargin-induced apoptosis. Application of the store-operated channel (SOC)-inhibitors SK F96365 and 2-APB downmodulated APP-triggered potentiation of cytosolic Ca2+ levels and apoptosis after treatment with thapsigargin. Our data demonstrate that APP-mediated regulation of ER Ca2+ homeostasis significantly modulates Ca2+ store depletion-induced cell death in a SOC- and CHOP-dependent manner, but independent of the UPR

    Activation of executioner caspases is a predictor of progression-free survival in glioblastoma patients: a systems medicine approach.

    Get PDF
    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. GBM cells are highly resistant to apoptosis induced by antitumor drugs and radiotherapy resulting in cancer progression. We assessed whether a systems medicine approach, analysing the ability of tumor cells to execute apoptosis could be utilized to predict the response of GBM patients to treatment. Concentrations of the key proapoptotic proteins procaspase-3, procaspase-9, Smac and Apaf-1 and the antiapopotic protein XIAP were determined in a panel of GBM cell lines and GBM patient tumor resections. These values were used as input for APOPTO-CELL, a systems biological based mathematical model built to predict cellular susceptibility to undergo caspase activation. The modeling was capable of accurately distinguishing between GBM cells that die or survive in response to treatment with temozolomide in 10 of the 11 lines analysed. Importantly the results obtained using GBM patient samples show that APOPTO-CELL was capable of stratifying patients according to their progression-free survival times and predicted the ability of tumor cells to support caspase activation in 16 of the 21 GBM patients analysed. Calculating the susceptibility to apoptosis execution may be a potent tool in predicting GBM patient therapy responsiveness and may allow for the use of APOPTO-CELL in a clinical setting
    corecore