88 research outputs found

    Structure and thermodynamics of H3O+(H2O)8 clusters: A combined molecular dynamics and quantum mechanics approach

    Get PDF
    We have studied the structure and stability of H3O+(H2O)8 clusters using a combination of molecular dynamics sampling and high-level ab initio calculations. 20 distinct oxygen frameworks are found within 2 kcal/mol of the electronic or standard Gibbs free energy minimum. The impact of quantum zero-point vibrational corrections on the relative stability of these isomers is quite significant. The box-like isomers are favored in terms of electronic energy, but with the inclusion of zero-point vibrational corrections and entropic effects tree-like isomers are favored at higher temperatures. Under conditions from 0 to 298.15 K, the global minimum is predicted to be a tree-like structure with one dangling singly coordinated water molecule. Above 298.15 K, higher entropy tree-like isomers with two or more singly coordinated water molecules are favored. These assignments are generally consistent with experimental IR spectra of (H3O+)(H2O)8 obtained at 150 K

    Optimized atomistic force fields for aqueous solutions of Magnesium and Calcium Chloride: Analysis, achievements and limitations

    No full text
    Molecular simulations are an important tool in the study of aqueous salt solutions. To predict the physical properties accurately and reliably, the molecular models must be tailored to reproduce experimental data. In this work, a combination of recent global and local optimization tools is used to derive force fields for MgCl2 (aq) and CaCl2 (aq). The molecular models for the ions are based on a Lennard-Jones (LJ) potential with a superimposed point charge. The LJ parameters are adjusted to reproduce the bulk density and shear viscosity of the different solutions at 1 bar and temperatures of 293.15, 303.15, and 318.15 K. It is shown that the σ-value of chloride consistently has the strongest influence on the system properties. The optimized force field for MgCl2 (aq) provides both properties in good agreement with the experimental data over a wide range of salt concentrations. For CaCl2 (aq), a compromise was made between the bulk density and shear viscosity, since reproducing the two properties requires two different choices of the LJ parameters. This is demonstrated by studying metamodels of the simulated data, which are generated to visualize the correlation between the parameters and observables by using projection plots. Consequently, in order to derive a transferable force field, an error of ∼3% on the bulk density has to be tolerated to yield the shear viscosity in satisfactory agreement with experimental data
    corecore