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a b s t r a c t

We have studied the structure and stability of H3O+(H2O)8 clusters using a combination of molecular
dynamics sampling and high-level ab initio calculations. 20 distinct oxygen frameworks are found within
2 kcal/mol of the electronic or standard Gibbs free energy minimum. The impact of quantum zero-point
vibrational corrections on the relative stability of these isomers is quite significant. The box-like isomers
are favored in terms of electronic energy, but with the inclusion of zero-point vibrational corrections and
entropic effects tree-like isomers are favored at higher temperatures. Under conditions from 0 to
298.15 K, the global minimum is predicted to be a tree-like structure with one dangling singly coordi-
nated water molecule. Above 298.15 K, higher entropy tree-like isomers with two or more singly coordi-
nated water molecules are favored. These assignments are generally consistent with experimental IR
spectra of (H3O+)(H2O)8 obtained at �150 K.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Water is an extremely important molecule that, as far as we
know, uniquely exists in abundance on Earth. The Earth’s water cy-
cle is a complex interplay of solid, liquid and gaseous states of
water, and this cycle is involved in many different chemical, ther-
modynamic, and environmental events [1]. While our understand-
ing of the water cycle has improved because of interest in global
warming and space exploration, our atomistic understanding of
water clusters and aerosols is not complete [2,3]. Here, we present
a computational investigation of how eight water molecules inter-
act with a hydronium ion in the gas phase. The hydronium ion and
its hydration is an inherent part of aqueous solutions, gas-phase
clusters, and aerosols. Improving our understanding of the
configuration and thermodynamics of H3O+(H2O)8, or H+(H2O)9,
clusters is an important step in elucidating how water molecules
form larger clusters and, subsequently, aerosols in the atmosphere.
This work is a continuation of long-standing efforts to explore
ion–molecule interactions [4–8], hydrogen-bonded interactions

[9–11,16–28], water cluster formation [3,4,9–20], and atmospheric
processes [5–8,12,21–28].

Theoreticians have investigated water–hydronium clusters
since at least 1970 [29,30]. Many groups have used quantum
mechanics (QM) calculations to optimize structures and energies
of H3O+(H2O)n with n = 1–21 [4,29–60]. Most of these calculations
have been on species of particular interest, such as H3O+(H2O)
(Zundel cation) and H3O+(H2O)20 (a magic number of stable water
molecules), with fewer on medium sized clusters ranging in size
from H3O+(H2O)4 to H3O+(H2O)10 [4,35,37,39,41,43,48,49,51,54,56].

Once the nonbonded cluster reaches a certain size (i.e. more
than �5 molecules), sampling configurational space becomes
increasingly difficult. To address this, several research groups have
used Monte Carlo, molecular dynamics (MD), and basin hopping
techniques to sample and generate different configurations [46–
48,54,61–67]. Karthikeyan and Kim [48] performed the highest le-
vel calculations on H3O+(H2O)8; they employed the Resolution-of-
the-identity (RI) second-order Møller–Plesset perturbation theory
(MP2) [68] method, extrapolated to the complete basis set limit,
and corrected for higher-order correlation using CCSD(T). They
identified 9 possible cluster configurations within 4.3 kcal/mol of
their identified elctronic energy (Ee) global minimum. A recent
study by Bankura and Chandra identified 6 low energy clusters
using counterpoise corrected MP2/6-31+G� electronic energies
[54]. Unfortunately the clusters’ coordinates from these two re-
search efforts are not available as Supplementary information,
making their direct comparison difficult. Herein, we improve on
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this previous work by (a) generating a large number of isomers via
an MD simulation that employs a newly optimized H3O+ force field
and integrate isomers from existing literature, (b) filtering these
isomers using a series of RI-MP2 ab initio calculations, (c) employ-
ing a more robust basis set extrapolation scheme, and (d) eliminat-
ing unreliable CCSD(T) corrections that use small basis sets [69,70].
Our extensive sampling of structures from an MD simulation, com-
bined with previously reported unique structures [62,71], result in
51 low energy conformers that fall into 20 unique groups as de-
fined by their oxygen skeleton framework. The effect that zero-
point vibrational energy (ZPVE), entropy, and temperature have
on the relative stability of the isomers is discussed.

2. Computational methods

Classical molecular dynamics simulations of H3O+(H2O)1–6 clus-
ters in vacuum, an H3O+ ion in liquid water, and several H3O+ ions
in a saturated water/HCl solution were carried out in the isobaric–
isothermal (NPT) ensemble in order to parameterize an all atom
force field for the H3O+ ion. With the newly parameterized hydro-
nium force field, a production run of a H3O+(H2O)8 cluster was per-
formed in order to generate cluster structures that sample the
conformational space of the H3O+(H2O)8 system.

The force field used is represented by a sum of pair-wise addi-
tive interatomic Lennard–Jones (LJ) and Coulombic potentials:

U ¼
XN�1

i¼1

XN

j>1

½ULJðrijÞ þ UCoulðrijÞ� ð1Þ

with

ULJ ¼ 4eij
rij

rij

� �12

� rij

rij

� �6
" #

ð2Þ

UCoul ¼
qiqj

4pe0rij
ð3Þ

All intramolecular bonds and angles of the molecules and ions
were kept fixed. Electrostatic interactions were computed using
the particle mesh Ewald summation method with a real space
cutoff of 1.2 nm, a mesh spacing of approximately 0.12 nm, and
fourth order interpolations [72]. The OPLS combining rules were
applied. Temperature and pressure control was achieved using a
Nosé–Hoover thermostat and the Rahman–Parrinello barostat with
coupling times sT = 0.5 ps and sp = 2.0 ps. Equilibrium runs took
1 ns and were followed by 10 ns trajectories with 2 fs time steps.
The TIP4P-Ew model [73] was used to model H2O, while the force
field published by Joung and Cheatham [74] was used to model
Cl� since it was explicitly parameterized for use with TIP4P-Ew.
All simulations were carried out using the Gromacs-4.0.5 package
[75].

The purpose of the current force-field development is to param-
eterize an all-atom force field for H3O+ that can reproduce experi-
mental macro- and microscopic properties. The structure of H3O+

was optimized at the MP2/6-31+G� theory level using the GAMESS
package [76]. All bonds and angles are kept fixed, and there is no
possibility of proton transfer. The total charge of the hydronium
was enforced to be +1, enabling it to be used in very different
environments, from vacuum to the condensed phase. Since the
resulting H3O+ force field should be compatible with the molecular
mechanics water model, we used TIP4-EW’s LJ parameters and
partial atomic charges as our initial values. In the parameterization
process the first condensed-phase simulation contained 585 H2O
and 1 H3O+, while the second contained 585 H2O, 60 H3O+, and
60 Cl� to model a saturated water/HCl solution. All condensed-
phase simulations were performed under periodic boundary
conditions at 1 bar and 300 K. The vacuum simulations of the

H3O+(H2O)1–6 clusters were performed at 150 K without periodic
boundary conditions and with translational and rotational degrees
of freedom switched off.

The partial charges, the position of the virtual site, and the LJ-
parameters shown in Table 1 were iteratively changed to repro-
duce (a) the previously computed and experimental enthalpy of
solvation (DHexp. = �115.0 and DHsim. = �116.7 [77,78]), (b) the
standard formation enthalpies of water/hydronium clusters in vac-
uum (Fig. 1), and (c) HH3O+---OH2O and HH3O+---HH2O radial distri-
bution functions (RDFs) of a saturated HCl solution (Fig. 2). The
standard solvation enthalpy was obtained from the intermolecular
potential energy of the dissolved hydronium at 298 K; it was as-
sumed that the vapor phase is formed by isolated hydronium ions,
making it unnecessary to simulate the ion in the vacuum. In all
three comparisons, the MD simulations using the optimized force
field perform well. As seen in Fig. 1, representing the solution-
phase behavior, the position of the peaks overlap well with exper-
imental position [79], and the area-under-the-curves are also in
relatively close agreement. Likewise, the stepwise addition of 1–6
water molecules reproduces experimental gas-phase enthalpies
well [80]. The optimized H3O+ force-field parameters are given in
Table 1.

The same simulation parameters were used in the production
run of the H3O+(H2O)8 cluster as used in the vacuum simulations
of the H3O+(H2O)1–6 systems. This simulation was run for 10 ns
at a temperature of 150.0 K. Exactly 200 snapshots of the atomic
coordinates were produced, one every 50 ps, and used as input into
the QM structure optimization. RI-MP2, as implemented in ORCA
2.9 [81], was used to obtain fully optimized structures and ener-
gies. To this list of MD-identified structures, we added 42 low en-
ergy clusters found by Hodges and Wales [62] using their
anisotropic site potential (ASP) potential [39]. These minima were
determined by first performing three basin hopping runs of 30,000
quenches using the simple Kozack-Jordan (KJ) [82] potential and
reoptimizing the low energy structures using the more elaborate
ASP potential. Those coordinates are deposited in the Cambridge
Cluster Database [71].

RI-MP2 uses density fitting to expand four-index two electron
integrals in terms of two- and three-index two electron integrals
that are cheaper to compute and transform [83]. As a result, it is
less expensive than conventional MP2 while maintaining the same
level of accuracy, particularly for modeling hydrogen bonded sys-
tems [84]. When applied in conjunction with correlation consistent
basis sets that can be extrapolated to their complete basis set (CBS)
limit, such as the aug-cc-pVNZ (abbreviated as aVNZ, where N = D,
T, Q, . . .) [85,86], it yields benchmark quality binding energies,
equilibrium geometries and vibrational frequencies. The MD
structures were first minimized using RI-MP2/6-31G�, resulting
in better refined structures at a reasonable cost [34,17]. The
RI-MP2/6-31G� optimized structures were then subject to RI-
MP2/aVDZ single-point energy calculations, and all isomers whose
relative energy was more than 6 kcal/mol higher than the lowest
energy isomer were excluded. The remaining unique low energy

Table 1
Force field parameters for the hydronium ion parameterized in this work.

Atom type r (nm) e (kJ/mol) q (e)

OH 0.0 0.0 �2.78
HH 0.11 0.5 1.26
MH 0.3843 0.6810 0.0

Geometry r (nm) u (�)

OH-HH 0.9686
OH-MH 0.0500
HH-OH-HH 113.0
HH-OH-MH 107.0
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isomers were optimized using RI-MP2/aVDZ with tight conver-
gence criteria on the SCF wavefunction, energies, gradients and dis-
placements. The harmonic vibrational frequencies, needed to
calculate the ZPVE and finite temperature thermodynamic correc-
tions to the enthalpy (H) and entropy (S), were also determined
using RI-MP2/aVDZ. Furthermore, the RI-MP2 CBS limit energies
were calculated using a basis set extrapolation scheme. This 4–5
inverse polynomial extrapolation [87] has been used extensively
for water clusters:

ERI-MP2
CBS ¼ ERI-MP2

N þ b

ðN þ 1Þ4
þ c

ðN þ 1Þ5
ð4Þ

where ERI-MP2
N is an RI-MP2/aVNZ//aVDZ energy, ERI-MP2

CBS is the extrap-
olated RI-MP2/CBS energy, N is the largest angular momentum
number for the aVNZ basis set (N = 2, 3, 4 for N = D, T, Q, respec-
tively), and b and c are fitting parameters. Least-squares fitting of
the RI-MP2/aVNZ//aVDZ (N = D, T, Q) binding energies to Eq. (4)
yields the RI-MP2/CBS energy for a given cluster (see Table 2).

The most stable structure at a given temperature is determined
by combining the RI-MP2/CBS electronic energy with finite
temperature thermodynamic corrections assuming ideal gas

conditions with a rigid-rotor approximation for molecular rota-
tions and a harmonic oscillator model for vibrations. The harmonic
vibrational frequencies were not scaled since uniform scaling
factors do not change the relative stability of the isomers notably.
The binding energy (DEi) of isomer i was calculated as the energy
difference between the cluster and infinitely separated
constituents:

DEi ¼ E½H3OþðH2OÞ8�i � E½H3Oþ� � 8 � E½H2O� ð5Þ

The relative energy (DDEi) of cluster i was calculated using the
global minimum as a reference:

DDEi ¼ E½H3OþðH2OÞ8�i �MINn¼1...NfE½H3OþðH2OÞ8�ng ð6Þ

The binding [DG(T)] and relative [DDG(T)] Gibbs free energies
were calculated similarly. Standard state conditions are 1 atm
pressure and the stated temperature. All molecular graphics are
generated with Chimera 1.7 using its default hydrogen bond defi-
nition [88].

3. Results and discussion

3.1. MD simulation and configurational sampling

MD simulations are a useful tool for sampling the H3O+(H2O)8

configurational space in vacuum. Since the intermolecular interac-
tions are realistic, every snapshot extracted from the simulation
trajectory represents a thermodynamically meaningful structure
and can be directly used as input for an ab initio structure optimi-
zation. An overlay of the structures extracted from MD simulations
with the eventual ab initio optimized minima shows good agree-
ment, particularly for the more stable species, as shown in Fig. S1.

The experimental enthalpy of formation data (Fig. 1) suggests
that the addition of a third water molecule to the H3O+(H2O)2 clus-
ter has a significant influence on the average hydrogen bond
energy. Since this is a quantum effect, it is very difficult to repro-
duce using classical mechanics. Thus, the force field was optimized
to provide all hydrogen bonds the same energetic value such that
the solvation enthalpy, the radial distribution function in the HCl
solution, and the hydrogen bond strength of the first two water
molecules in the gas phase are optimally reproduced. The linearity
of the simulated data at n = 3 with the first two data points is be-
cause the third hydrogen bond has the same strength as the first
two hydrogen bonds in the classical model. The slope of the curve
after n = 3 mirrors the experimental slope [80] because the subse-
quent water molecules do not form hydrogen bonds with the
hydronium, instead binding to another water molecule. It is
unavoidable to have this curve offset if we wish to reasonably
model the bulk phase since the experimental hydrogen bond aver-
age may change in going from the gas to the bulk phase.

The vast diversity of hydrogen bonding topologies available for
H3O+(H2O)8 necessitates reliable configurational sampling. In our
case, MD simulations at 150 K provided 200 structures that yielded
the Gibbs free energy minima for T P 0 K. However, optimizations
starting with the 42 ASP minima [62] largely yielded structures
that had low electronic energy, but high Gibbs free energies at
most finite temperatures. Therefore, it was necessary to combine
the ASP and MD starting structures to sample all important hydro-
gen bonding motifs over the entire temperature range of interest.

3.2. Structures and stability

Of the 242 initial structures, 51 unique isomers have electronic
energy within 6 kcal/mol of the RI-MP2/CBS electronic energy glo-
bal minimum. Thirty-six of these 51 have relative electronic energy
(DDEe), zero-point corrected energy (DDE0) or standard Gibbs free

Fig. 1. The MD simulated and experimental [80] intermolecular molar standard
formation enthalpies of water/hydronium clusters in vacuum as a function of 1–6
water molecules.

Fig. 2. The MD simulated and experimental radial distribution functions of a
saturated HCl solution. The experimental [79] RDFs are measured between a
hydronium hydrogen and a water oxygen (Exp: black line; MD: red) or water
hydrogen (Exp: green; MD: blue; offset for clarity). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.) Reproduced from Ref. [66] with permission of the PCCP Owner
Societies.
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energy (DDG0) that are within 2 kcal/mol of the absolute minima
for DDEe, DDE0, or DDG0. These 36 low energy isomers can be fur-
ther categorized into 20 different groups based on their oxygen
skeleton and hydrogen bond topology; we report the lowest energy
isomer of each group in Fig. 3 in order of increasing electronic
energy.

The hydrated proton is in an Eigen form (H3O+) in all the clus-
ters with the O–H bond distance of the H3O+ moiety spanning a
range of 0.99–1.05 Å. with an average of 1.022 Å. There is no

indication of a shared proton – the nearest oxygen of a water
molecule to the H3O+ hydrogens is at least 1.45 Å away. The
H3O+ donates three strong HBs to the surrounding water molecules
as previously seen in experimental infrared spectra [66,89–91],
and low energy structures for H3O+(H2O)n where n P 3 [49,54–
56,62]. The H3O+--H2O HBs are strong as evidenced by their
average distance of 1.54 Å versus 1.86 Å for H2O--H2O HBs. Such
large geometric differences are understandable considering that
the electronic binding energy H3O+–H2O is about 34 kcal/mol

Table 2
RI-MP2/CBSa binding energies for the lowest energy members of the 20 isomer groups of H3O+(H2O)8.b

#HBs Isomer CBS 0 K 150 K 298.15 K

DEe DH DH DG DH DG

13 A �144.93 �123.27 �129.70 �91.45 �130.87 �52.94
12 B �144.06 �122.96 �129.19 �91.55 �130.16 �53.73
12 C �143.44 �122.66 �128.83 �91.33 �129.78 �53.64
11 D �143.15 �123.13 �129.02 �92.53 �129.76 �55.94
12 E �143.10 �122.28 �128.43 �90.99 �129.33 �53.39
11 F �143.08 �123.31 �128.98 �92.84 �129.56 �56.67
12 G �142.98 �122.65 �128.60 �91.79 �129.37 �54.88
12 H �142.83 �122.45 �128.39 �91.55 �129.15 �54.60
13 I �142.76 �121.51 �127.72 �90.10 �128.65 �52.30
11 J �142.73 �122.67 �128.55 �91.93 �129.13 �55.27
13 K �142.58 �121.44 �127.64 �89.97 �128.51 �52.14
12 L �142.27 �122.25 �128.06 �91.56 �128.66 �55.03
12 M �142.05 �121.73 �127.70 �90.64 �128.32 �53.53
11 N �142.05 �122.54 �128.18 �92.16 �128.72 �56.12
12 O �141.98 �121.51 �127.59 �90.35 �128.34 �53.01
12 P �141.98 �121.39 �127.34 �90.50 �128.07 �53.57
11 Q �141.41 �121.65 �127.34 �91.42 �127.86 �55.48
11 R �141.29 �122.18 �127.65 �91.98 �128.02 �56.36
11 S �141.21 �122.23 �127.64 �92.14 �127.98 �56.72
11 T �140.73 �121.33 �126.96 �91.05 �127.45 �55.14

a RI-MP2/aVDZ//aVDZ, RI-MP2/aVTZ//aVDZ, RI-MP2/aVQZ//aVDZ binding energies extrapolated using Eq. (4).
b All energies are in kcal/mol. Global minima shown in bold.

Fig. 3. RI-MP2/CBS//aVDZ low energy isomers of H3O+(H2O)8 ordered by increasing relative electronic energy, DDEe. DDG(298) represents the relative free energy at a
standard state of 298.15 K and 1 atm. The hydronium ion is shown in red and the dangling water in white for visibility; the other waters appear gray. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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compared to just 5 kcal/mol for H2O–H2O [45]. The hydronium
oxygen does not accept a hydrogen bond because of hydrogen–
hydrogen repulsion. As a result, H3O+ remains on the surface in
all reported structures. Only when n P 17 do clathrate cage struc-
tures with either a water molecule or hydronium ion encapsulated
become competitive with the surface H3O+ [54,62,64]. However,
because of the nature of the MD input structure (i.e. covalent bonds
between all hydrogen and heavy atoms) it is possible that the ab
initio optimization performed at 0 K never had a chance to sample
the proton in a Zundel form due to a proton transfer barrier. Exper-
imental and computational studies have suggested that larger clus-
ters can adopt Zundel forms [42,50,55,58,90,92]. While interesting,
an investigation of Eigen versus Zundel forms of the cation within
the identified H3O+(H2O)8 clusters is beyond the scope of this work.

The most stable isomers in terms of RI-MP2/CBS electronic en-
ergy are the box-like structures with every water molecule doubly
(DA, DD, AA) or triply (DAA, DDA) coordinated, where ‘‘D’’ indicates
a hydrogen bond donor and ‘‘A’’ an acceptor. Such is the case, for
example, with structures A–E. At higher energies, tree-like isomers
become more prominent with one or two singly coordinated water
molecules that dangle as a hydrogen bond acceptor (‘‘A’’). These
motifs are favored in terms of free energies with increasing tem-
perature due to their higher entropic content. This interplay be-
tween the enthalpic stabilization and the entropic penalty for
forming hydrogen bonds (HBs) is responsible for the competition
between the box-like and tree-like structures. Even though the
presence of more HBs generally correlates with higher stability in
terms of electronic energy, it does not fully explain the observa-
tions here. For example, in Table 3 some isomers that have 13
HBs are less stable than others with 11 HBs. This is mainly because
of the large variation in the strength of the hydrogen bonds
involved.

As illustrated in Fig. 4, the 20 isomers fall within a �4 kcal/mol
range, in terms of electronic energy, and only one isomer is within
1 kcal/mol of the global minimum structure A. However, the inclu-
sion of ZPVE decreases the relative energy separation between the
20 isomers to about 2 kcal/mol. the global minimum structure also
changes from isomer A to isomer F. Adding finite temperature cor-
rections increases the relative energy spectrum at higher tempera-
tures because of entropic effects. Since isomers A, F, and S are

representative of the most important structural motifs, we exam-
ined the change in their relative free energies as a function of tem-
perature at 1 atm pressure in Fig. 5. It is clear that isomer F (and
possibly others with a single dangling water molecule) have the
most stable structures for T < 290 K. For T > 290 K, isomer S and
presumably others with two or more dangling water molecules
are most likely to be observed.

There are substantial differences between the structures of pure
water clusters, (H2O)n [17,18], and hydrated protons (H+)(H2O)n.
While small water clusters form cyclic minima for n < 6 and qua-
si-planar or three-dimensional structures for n P 6, hydrated pro-
tons adopt very different configurations. For (H+)(H2O)n, branched
or chain-like structures are dominant for n < �10 and two-dimen-
sional net structures are common for �10 < n < 21, while three-
dimensional cages are favored for n P 21 [89,91]. This behavior
strongly suggests that the proton or hydronium ion profoundly
perturbs the structure of water clusters in the gas phase. In the
case of H3O+(H2O)8, the box-like isomer A has the same oxygen
framework as the lowest energy (H2O)9 isomers – both have
stacked water tetramers and pentamers. However, the (H2O)9

structures have homodromic hydrogen bonding networks that
are largely absent in the box-like isomers of H3O+(H2O)8. A com-
parison of H3O+(H2O)8 with NHþ4 ðH2OÞ8 reveals significant spectral
and structural similarities such as the presence of surface cations
and box-like structures with one or two singly coordinated water
molecules [7,93].

Nuclear quantum effects such as zero-point motion and tunnel-
ing affect strength of hydrogen bonds, and the relative population
and interconversion between different isomers at any finite tem-
perature [94–96]. While accounting for these effects is theoreti-
cally difficult and computationally expensive, there has been a
lot of progress running path integral molecular dynamics (PIMD)
[97,98] on full dimensional ab initio potentials to capture them
[67]. Due to the impact that ZPVE corrections have on the relative
stability of the clusters, future calculations that attempt to better
account for anharmonicity (e.g. using ab initio-based diffusion
Monte Carlo) [99] would be intriguing. Anharmonic corrections
have been shown to be important at reproducing experimental
vibrational frequencies under 1000 cm�1 in the water dimer [16].
Recent ab initio-based simulations performed on neutral water
clusters have shown that nuclear quantum effects can alter the rel-
ative stability of isomers at temperatures below 150 K [67]. Con-
sidering the quantum nature of the extra proton present in the
charged clusters presented here, accounting for these effects could
have a notable effect on their relative stability. While the role of

Table 3
RI-MP2/CBSa relative energies of the lowest energy members of the 20 isomer groups
of H3O+(H2O)8.b

#HBs Isomer CBS 0 K 150 K 298.15 K

DDEe DDH DDH DDG DDH DDG

13 A 0.00 0.04 0.00 1.39 0.00 3.77
12 B 0.87 0.35 0.51 1.29 0.71 2.98
12 C 1.49 0.65 0.87 1.52 1.09 3.07
11 D 1.78 0.18 0.68 0.31 1.11 0.77
12 E 1.83 1.02 1.26 1.85 1.54 3.32
11 F 1.85 0.00 0.72 0.00 1.31 0.04
12 G 1.95 0.65 1.10 1.05 1.50 1.84
12 H 2.10 0.86 1.31 1.29 1.72 2.11
13 I 2.17 1.80 1.98 2.74 2.22 4.42
11 J 2.20 0.63 1.15 0.91 1.74 1.45
13 K 2.34 1.87 2.06 2.88 2.35 4.57
12 L 2.65 1.05 1.64 1.28 2.21 1.69
12 M 2.88 1.58 2.00 2.20 2.55 3.19
11 N 2.88 0.76 1.51 0.68 2.15 0.60
12 O 2.95 1.80 2.11 2.49 2.52 3.71
12 P 2.95 1.92 2.35 2.34 2.79 3.14
11 Q 3.52 1.65 2.36 1.42 3.00 1.23
11 R 3.64 1.12 2.05 0.86 2.85 0.35
11 S 3.72 1.08 2.06 0.70 2.89 0.00
11 T 4.20 1.98 2.74 1.79 3.42 1.57

a RI-MP2/aVDZ//aVDZ, RI-MP2/aVTZ//aVDZ, RI-MP2/aVQZ//aVDZ binding ener-
gies extrapolated using Eq. (4).

b All energies are in kcal/mol. Global minima shown in bold.

Fig. 4. The RI-MP2/CBS relative electronic (DDEe) and free (DDGT) energies of the
20 isomers at various temperatures. Inclusion of the ZPVE makes box-like and tree-
like structures more competitive, leading to a higher density of isomers at 0 K.
Entropic corrections increase the free energy differences with temperature.
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quantum effects on these clusters remains an open question, their
electronic binding energy has been determined using high level ab
initio methods.

3.3. Comparison to previous calculations

Karthikeyan and Kim [48], whose computational investigation
is the most similar to ours, employed Halkier’s [100,101] two-point
inverse cubic extrapolation scheme using aVDZ–aVTZ and
aVTZ–aVQZ basis sets to obtain RI-MP2/CBS energies. Since the
convergence of the binding energy with increasing basis sets is
not monotonic, a two-point extrapolation with an inverse cubic
function can lead to erroneous CBS limits. Our investigations of
basis set extrapolation schemes for hydrogen-bonded systems
[18,27], all demonstrate that Halkier’s extrapolation using the
aVNZ (N = D, T, Q) basis sets gives lower RI-MP2 binding energies
than benchmark values. Conversely, the 4–5 inverse polynomial
scheme [Eq. (4)] we employ here matches benchmark values very
closely. This polynomial also converges the counterpoise corrected
and uncorrected binding energies to the same limit, whereas
employing the Halkier extrapolation leads to slightly different lim-
its. Bryantsev and coworkers [45] also tested many extrapolation
schemes for (H2O)n, (OH�)(H2O)n, and (H3O+)(H2O)n, concluding
that the 4–5 inverse polynomial scheme provides the most reliable
binding energy.

Unlike Karthikeyan and Kim [48], we did not include higher-or-
der electron correlation corrections with a small basis set,

dCCSDðTÞ
MP2 ¼ E½CCSDðTÞ=aVDZ==MP2=aVDZ� � E½MP2=aVDZ� ð7Þ

because such corrections using a small double-zeta basis set (e.g.
aVDZ) are unreliable. Recent work from the Sherrill and Tschumper
groups discovered a significant discrepancy when including
CCSD(T) corrections with a small basis set for a series of non-cova-
lently bonded systems [69,70]. Therefore, MP2/CBS energies are
likely more reliable than CCSD(T)/CBS estimates, if the dCCSDðTÞ

MP2 cor-
rection is not calculated using a triple-zeta or larger basis.

3.4. Comparison with experimental IR spectra

Many experimental groups have used infrared (IR) spectroscopy
to probe OH stretching and bending regions of size selected
(H+)(H2O)n clusters in an effort to derive structural information.
Miyazaki and coworkers [89] looked at the OH stretching for
n = 4–27 and concluded that chain-like structures are dominant
for n < �10, two-dimensional net structures are common for
�10 < n < 21, and three-dimensional cages are favored for n P 21.
Similar work by Shin and coworkers [90] deduced the presence
of a ‘‘magic number’’ cluster at n = 21, based on the evolution of
a dangling OH group excitation as a function of cluster size. Head-
rick and coworkers [91] observed unique bands in the bending and
stretching region of (H+)(H2O)n=2–11, and confirmed the presence of
structures with one or two dangling water molecules for n = 2–11.
In all of these experiments, the temperature of the clusters is not
clearly defined, making comparisons between calculated and
experimentally inferred results difficult. In Lin and coworkers’
vibrational predissociation spectroscopic experiments on
(H+)(H2O)n=9–11, the cluster temperatures were estimated to be
around 150 K [66]. Their spectra in the 2700–3900 cm�1 region
showed small peaks at �3740 and �3650 cm�1 that correspond
to the asymmetric and symmetric free OH stretch of a singly-coor-
dinated dangling (A) water molecule for n 6 9. These peaks essen-
tially disappear by n = 11. The implications of their work for
(H+)(H2O)9 is that clusters with at least one dangling water mole-
cule are indeed present, and that other clusters may be thermally
populated (Fig. 5).

Fig. 6 shows a comparison between the experimental[66] and
RI-MP2/aVDZ calculated IR spectrum of isomers A, F, and S in the
3600–3800 cm�1 region. We scaled the harmonic frequencies by
0.9604 [102] to allow for a more direct spectrum comparison and
fitted each spectral line (red) to a Gaussian function (blue) with a
15 cm�1 full-width at half-maximum height (FWHM). The scaling
factor should correct the expected blue shift of the harmonic vibra-
tional spectra relative to the experimental and anharmonic analogs
[56], particularly for the H3O+ stretching modes in the 2000 cm�1

region. The signature peaks at �3650 and �3740 cm�1 are indica-
tive of a dangling water molecule, such as present in isomers F and
S.

As shown in Fig. 6, Isomer F appears to best match the experi-
mental spectrum. As mentioned above, other isomers might also
contribute to the spectrum, and their concentrations will be tem-
perature dependent. From our set of isomers, five have relative free
energies that are within 1 kcal/mol of the global minimum F at
150 K. These include isomers D (+0.31), N (+0.68), S (+0.70), R
(+0.86) and J (+0.91). Of these, isomers N, S, and R are likely candi-
dates since they have either one or two dangling water molecules.
Furthermore, the second lowest isomer of motif group F, (see F1 in
Fig. S1, Supplementary Materials) lies 0.1–0.2 kcal/mol higher than
isomer F. Considering that 150 K is equivalent to 0.30 kcal/mol of
thermal energy, we believe that F and F1 are the biggest contribu-
tors to the observed spectrum. Aside from the presence of many
nearly degenerate isomers at any finite temperature, interconver-
sion between these isomers through thermodynamic and kinetic
processes makes assigning an experimental spectrum to a particu-
lar isomer challenging.

Anharmoncity corrections to the vibrational spectra of hydro-
gen-bonded systems are significant because of the inherent limits
of a harmonic potential and the coupling of vibrational modes
[103]. Torrent-Sucarrat and Anglada investigated the effect of
anharmonicity on the vibrational spectra of H+(H2O)3, H+(H2O)4,
and H+(H2O)21 using second-order vibrational perturbation theory
(VPT2) [104] on B3LYP potential energy surfaces [56]. They con-
cluded that anharmonic corrections are essential to match experi-
mental spectra with harmonic vibrational spectral lines,
particularly for the H3O+ stretching modes in the 2000 cm�1 re-
gion. Chaban et al. reached similar conclusions on the basis of their
anharmonic calculations using a vibrational self-consistent field
(VSCF) [105] method and its correlation corrected analog (CC-
VSCF) on a MP2 potential energy surface for H+(H2O) and
H+(H2O)2 [40]. Despite the importance of anharmonicity, applying
simple scaling factors to harmonic frequencies to match experi-
mental spectral lines is still very effective for high frequency

Fig. 5. The RI-MP2/CBS relative stability of the three dominant motifs of
H3O+(H2O)8 as a function of temperature.
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(larger than 3000 cm�1) vibrational modes like the OH stretching
modes used here to assign signatures. Therefore, assigning specific
isomers to experimental spectra based on these high frequency OH
stretching modes should be meaningful even though the presence
and interconversion of isomers cannot be ruled out.

4. Conclusions

We have studied the structure and thermodynamics of
(H3O+)(H2O)8 using molecular dynamics sampling and high-level
ab initio calculations. We find 20 distinct groups, based on their
oxygen framework, within 2 kcal/mol of the electronic or standard
Gibbs free energy. The impact of quantum ZPVE corrections on the
relative stability of these isomers is quite significant, thereby pre-
senting a challenge for classical force fields. The box-like isomers
are favored in terms of electronic energy, but including ZPVE
corrections and entropic effects result in tree-like isomers as the

global minima at higher temperatures. Under conditions from 0 K
to room temperature, the global minimum is a tree-like structure
with one dangling singly coordinated (A) water molecule. Above
290 K, tree-like isomers with two or more singly coordinated water
molecules are the global minima. These assignments are generally
consistent with experimental IR spectra of (H3O+)(H2O)8 at�150 K;
structures with one or two dangling water molecules are responsi-
ble for the experimentally observed vibrational spectra.
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