24 research outputs found

    Bioimpedance index for measurement of total body water in severely malnourished children: Assessing the effect of nutritional oedema

    Get PDF
    Restoration of body composition indicates successful management of severe acute malnutrition (SAM). Bioimpedance (BI) index (height(2)/resistance) is used to predict total body water (TBW) but its performance in SAM, especially with oedema, requires further investigation

    Body mass index trajectories in early childhood in relation to cardiometabolic risk profile and body composition at 5 years of age

    Get PDF
    BACKGROUND: Both impaired and accelerated postnatal growth have been associated with adult risks of obesity and cardiometabolic diseases, like type 2 diabetes and cardiovascular disease. However, the timing of the onset of cardiometabolic changes and the specific growth trajectories linking early growth with later disease risks are not well understood. OBJECTIVES: The aim of this study was to identify distinct trajectories of BMI growth from 0 to 5 y and examine their associations with body composition and markers of cardiometabolic risk at age 5 y. METHODS: In a prospective birth cohort study of 453 healthy and term Ethiopian children with BMIs assessed a median of 9 times during follow-up, we identified subgroups of distinct BMI trajectories in early childhood using latent class trajectory modeling. Associations of the identified growth trajectories with cardiometabolic markers and body composition at 5 y were analyzed using multiple linear regression analyses in 4 adjustment models for each outcome. RESULTS: We identified 4 heterogeneous BMI growth trajectories: stable low BMI (19.2%), normal BMI (48.8%), rapid catch-up to high BMI (17.9%), and slow catch-up to high BMI (14.1%). Compared with the normal BMI trajectory, children in the rapid catch-up to high BMI trajectory had higher triglycerides (TGs) (range of β-coefficients in Models 1-4: 19-21%), C-peptides (23-25%), fat masses (0.48-0.60 kg), and fat-free masses (0.50-0.77 kg) across the 4 adjustment models. Children in the stable low BMI trajectory had lower LDL cholesterol concentrations (0.14-0.17 mmol/L), HDL cholesterol concentrations (0.05-0.09 mmol/L), fat masses (0.60-0.64 kg), and fat-free masses (0.35-0.49 kg), but higher TGs (11-13%). CONCLUSIONS: The development of obesity and cardiometabolic risks may be established already in early childhood; thus, our data provide a further basis for timely interventions targeted at young children from low-income countries with unfavorable growth patterns. The birth cohort was registered at ISRCTN as ISRCTN46718296

    HIV, TB, inflammation and other correlates of serum phosphate: A cross-sectional study.

    Get PDF
    BACKGROUND: There is little information about serum phosphate levels among patients with pulmonary tuberculosis (TB) and HIV infection. OBJECTIVE: We aimed to assess the role of TB, HIV, inflammation and other correlates on serum phosphate levels. METHODS: A cross-sectional study was conducted among TB patients and age- and sex-matched non-TB controls. Pulmonary TB patients were categorized as sputum -negative and -positive, based on culture. Age- and sex-matched non-TB controls were randomly selected among neighbours to sputum-positive TB patients. Data on age, sex, alcohol and smoking habits were obtained. HIV status, serum phosphate, and the acute phase reactants C-reactive protein (serum CRP) and α1-acid glycoprotein (serum AGP) were determined. Linear regression analysis was used to identify correlates of serum phosphate. RESULTS: Of 1605 participants, 355 (22.1%) were controls and 1250 (77.9%) TB patients, of which 9.9% and 50.4% were HIV-infected. Serum phosphate was determined before start of TB treatment in 44%, and 1-14 days after start of treatment in 56%. Serum phosphate was up to 0.10 mmol/L higher 1-3 days after start of TB treatment, and lowest 4 days after treatment, after which it increased. In multivariable analysis, TB patients had 0.09 (95% CI: 0.05; 0.13) mmol/L higher serum phosphate than controls, and those with HIV had 0.05 (95% CI: 0.01; 0.08) mmol/L higher levels than those without. Smoking was also a positive correlate of serum phosphate, whereas male sex and age were negative correlates. CONCLUSION: While HIV and TB are associated with higher serum phosphate, our data suggest that TB treatment is followed by transient reductions in serum phosphate, which may reflect hypophosphataemia in some patients

    Associations of fat mass and fat-free mass accretion in infancy with body composition and cardiometabolic risk markers at 5 years: The Ethiopian iABC birth cohort study

    Get PDF
    BACKGROUND: Accelerated growth in early childhood is an established risk factor for later obesity and cardiometabolic disease, but the relative importance of fat mass (FM) and fat-free mass (FFM) accretion is not well understood. We aimed to study how FM and FFM at birth and their accretion during infancy were associated with body composition and cardiometabolic risk markers at 5 years. METHODS AND FINDINGS: Healthy children born at term were enrolled in the Infant Anthropometry and Body Composition (iABC) birth cohort between December 2008 and October 2012 at Jimma University Specialized Hospital in the city of Jimma, Ethiopia. FM and FFM were assessed using air displacement plethysmography a median of 6 times between birth and 6 months of age. In 507 children, we estimated individual FM and FFM at birth and their accretion over 0-3 and 3-6 months of age using linear-spline mixed-effects modelling. We analysed associations of FM and FFM at birth and their accretion in infancy with height, waist circumference, FM, FFM, and cardiometabolic risk markers at 5 years using multiple linear regression analysis. A total of 340 children were studied at the 5-year follow-up (mean age: 60.0 months; girls: 50.3%; mean wealth index: 45.5 out of 100; breastfeeding status at 4.5 to 6 months post-partum: 12.5% exclusive, 21.4% almost exclusive, 60.6% predominant, 5.5% partial/none). Higher FM accretion in infancy was associated with higher FM and waist circumference at 5 years. For instance, 100-g/month higher FM accretion in the periods 0-3 and 3-6 months was associated with 339 g (95% CI: 243-435 g, p < 0.001) and 367 g (95% CI: 250-484 g, p < 0.001) greater FM at 5 years, respectively. Higher FM at birth and FM accretion from 0 to 3 months were associated with higher FFM and cholesterol concentrations at 5 years. Associations for cholesterol were strongest for low-density lipoprotein (LDL)-cholesterol, and remained significant after adjusting for current FM. A 100-g higher FM at birth and 100-g/month higher FM accretion from 0 to 3 months were associated with 0.16 mmol/l (95% CI: 0.05-0.26 mmol/l, p = 0.005) and 0.06 mmol/l (95% CI: 0.01-0.12 mmol/l, p = 0.016) higher LDL-cholesterol at 5 years, respectively. Higher FFM at birth and FFM accretion in infancy were associated with higher FM, FFM, waist circumference, and height at 5 years. For instance, 100-g/month higher FFM accretion in the periods 0-3 and 3-6 months was associated with 1,002 g (95% CI: 815-1,189 g, p < 0.001) and 624 g (95% CI: 419-829 g, p < 0.001) greater FFM at 5 years, respectively. We found no associations of FM and FFM growth with any of the other studied cardiometabolic markers including glucose, HbA1c, insulin, C-peptide, HOMA-IR, triglycerides, and blood pressure. Non-attendance at the 5-year follow-up visit was the main limitation of this study, which may have introduced selection bias and limited the power of the regression analyses. CONCLUSIONS: FM accretion in early life was positively associated with markers of adiposity and lipid metabolism, but not with blood pressure and cardiometabolic markers related to glucose homeostasis. FFM accretion was primarily related to linear growth and FFM at 5 years
    corecore