25 research outputs found

    Identification of response-modulated genetic interactions by sensitivity-based epistatic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput genomics has enabled the global mapping of genetic interactions based on the phenotypic impact of combinatorial genetic perturbations. An important next step is to understand how these networks are dynamically remodelled in response to environmental stimuli. Here, we report on the development and testing of a method to identify such interactions. The method was developed from first principles by treating the impact on cellular growth of environmental perturbations equivalently to that of gene deletions. This allowed us to establish a novel neutrality function marking the absence of epistasis in terms of sensitivity phenotypes rather than fitness. We tested the method by identifying fitness- and sensitivity-based interactions involved in the response to drug-induced DNA-damage of budding yeast <it>Saccharomyces cerevisiae </it>using two mutant libraries - one containing transcription factor deletions, and the other containing deletions of DNA repair genes.</p> <p>Results</p> <p>Within the library of transcription factor deletion mutants, we observe significant differences in the sets of genetic interactions identified by the fitness- and sensitivity-based approaches. Notably, among the most likely interactions, only ~50% were identified by both methods. While interactions identified solely by the sensitivity-based approach are modulated in response to drug-induced DNA damage, those identified solely by the fitness-based method remained invariant to the treatment. Comparison of the identified interactions to transcriptional profiles and protein-DNA interaction data indicate that the sensitivity-based method improves the identification of interactions involved in the DNA damage response. Additionally, for the library containing DNA repair mutants, we observe that the sensitivity-based method improves the grouping of functionally related genes, as well as the identification of protein complexes, involved in DNA repair.</p> <p>Conclusion</p> <p>Our results show that the identification of response-modulated genetic interactions can be improved by incorporating the effect of a changing environment directly into the neutrality function marking the absence of epistasis. We expect that this extension of conventional epistatic analysis will facilitate the development of dynamic models of gene networks from quantitative measurements of genetic interactions. While the method was developed for growth phenotype, it should apply equally well for other phenotypes, including the expression of fluorescent reporters.</p

    Estimating the Stochastic Bifurcation Structure of Cellular Networks

    Get PDF
    High throughput measurement of gene expression at single-cell resolution, combined with systematic perturbation of environmental or cellular variables, provides information that can be used to generate novel insight into the properties of gene regulatory networks by linking cellular responses to external parameters. In dynamical systems theory, this information is the subject of bifurcation analysis, which establishes how system-level behaviour changes as a function of parameter values within a given deterministic mathematical model. Since cellular networks are inherently noisy, we generalize the traditional bifurcation diagram of deterministic systems theory to stochastic dynamical systems. We demonstrate how statistical methods for density estimation, in particular, mixture density and conditional mixture density estimators, can be employed to establish empirical bifurcation diagrams describing the bistable genetic switch network controlling galactose utilization in yeast Saccharomyces cerevisiae. These approaches allow us to make novel qualitative and quantitative observations about the switching behavior of the galactose network, and provide a framework that might be useful to extract information needed for the development of quantitative network models

    Phenotypic impact of regulatory noise in cellular stress-response pathways

    Get PDF
    Recent studies indicate that intrinsic promoter-mediated gene expression noise can confer a selective advantage under acute environmental stress by providing beneficial phenotypic diversity within cell populations. To investigate how extrinsic gene expression noise impacts the fitness of cell populations under stress, we engineered two nearly isogenic budding yeast strains; one carrying a two-step regulatory cascade that allows for precise control of the noise transmitted from a transcriptional regulator to a downstream stress-inducing gene, and one carrying a network with low constant upstream noise. The fitness and gene expression of these strains were compared under acute and prolonged stress exposure. Using a phenomenological modeling approach, we predicted that increased noise should confer a fitness advantage under high stress conditions, but reciprocally reduce the resistance of the population to low stress. The model also predicted that extrinsic noise might serve as a basis for phenotypic plasticity whereby gene expression distributions are modulated in response to prolonged stress. Experimentally, we confirmed the predicted differential fitness advantage of extrinsic noise under acute stress, as well as the predicted modulation of gene expression under prolonged stress. However, contrary to model predictions, strains with low and high extrinsic noise showed very similar adaptive responses to prolonged stress. This suggests that while phenotypic heterogeneity generated by noise in regulatory signals can confer increased robustness to acute stress, it is not a requirement for the observed long-term phenotypic plasticity

    A Non-Death Role of the Yeast Metacaspase: Yca1p Alters Cell Cycle Dynamics

    Get PDF
    Caspase proteases are a conserved protein family predominantly known for engaging and executing apoptotic cell death. Nevertheless, in higher eukaryotes, caspases also influence a variety of cell behaviors including differentiation, proliferation and growth control. S. cerevisiae expresses a primordial caspase, yca1, and exhibits apoptosis-like death under certain stresses; however, the benefit of a dedicated death program to single cell organisms is controversial. In the absence of a clear rationale to justify the evolutionary retention of a death only pathway, we hypothesize that yca1 also influences non-apoptotic events. We report that genetic ablation and/or catalytic inactivation of Yca1p leads to a longer G1/S transition accompanied by slower growth in fermentation conditions. Downregulation of Yca1p proteolytic activity also results in failure to arrest during nocodazole treatment, indicating that Yca1p participates in the G2/M mitotic checkpoint. 20s proteasome activity and ROS staining of the Δyca1 strain is indistinguishable from its isogenic control suggesting that putative regulation of the oxidative stress response by Yca1p does not instigate the cell cycle phenotype. Our results demonstrate multiple non-death roles for yca1 in the cell cycle

    Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data

    Get PDF
    Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an external signal. The model provides the basis of an experimental method to determine the architecture of such pathways, and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ∼80% of the known relationships without any false positives

    Synchrony in a population of hysteresis-based genetic oscillators

    No full text
    Oscillatory behavior has been found in different specialized genetic networks. Previous work has demonstrated nonsynchronous, erratic single-cell oscillations in a genetic network composed of nonspecialized regulatory components and based entirely on negative feedback. Here, we present the construction of a more robust, hysteresis-based genetic relaxation oscillator and provide a theoretical analysis of the conditions necessary for single-cell and population synchronized oscillations. The oscillator is constructed by coupling two subsystems that have previously been implemented experimentally. The first subsystem is the toggle switch, which consists of two mutually repressive genes and can display robust switching between bistable expression states and hysteresis. The second subsystem is an intercell communication system involved in quorum-sensing. This subsystem drives the toggle switch through a hysteresis loop in single cells and acts as a coupling between individual cellular oscillators in a cell population. We demonstrate the possibility of both population synchronization and suppression of oscillations (cluster formation), depending on diffusion strength and other parameters of the system. We also propose the optimal choice of the parameters and small variations in the architecture of the gene regulatory network that substantially expand the oscillatory region and improve the likelihood of observing oscillations experimentally
    corecore