18 research outputs found

    10P. About the Nature of Enterprise Interoperability

    Get PDF
    Flexibility is one of today’s key business requirements. Transferring flexibility to the enterprise means that the enterprise needs to be able to operate in different ways. Classically this should be realized by a high degree of adaptability. However, you could also foresee and forethink possible ways of doing business and build your company accordingly. We call this state, where an enterprise is constructed in a way that it is able to seamlessly enter collaborations, Enterprise Interoperability. In this paper, we conceive the concept of Enterprise Interoperability. Furthermore, we depict its characteristics and decompose it into partial areas of interoperability that affects enterprises. Finally, we conclude in a framework that comprises and captures Enterprise Interoperability

    A Novel BAT3 Sequence Generated by Alternative RNA Splicing of Exon 11B Displays Cell Type-Specific Expression and Impacts on Subcellular Localization

    Get PDF
    Background: The human lymphocyte antigen (HLA) encoded BAT3/BAG6 recently attracted interest as a regulator of protein targeting and degradation, a function that could be exerted in the cytosol and in the nucleus. The BAT3 gene was described to consist of 25 exons. Diversity of transcripts can be generated by alternative RNA splicing, which may control subcellular distribution of BAT3. Methodology/Principal Findings: By cDNA sequencing we identified a novel alternatively spliced sequence of the BAT3 gene located between exons 11 and 12, which was designated as exon 11B. Using PCR and colony hybridization we identified six cDNA variants, which were produced by RNA splicing of BAT3 exons 5, 11B and 24. In four examined cell types the content of BAT3 splice variants was examined. Most of the cDNA clones from monocyte-derived dendritic cells contain exon 11B, whereas this sequence was almost absent in the B lymphoma Raji. Exon 5 was detected in most and exon 24 in approximately half of the cDNA clones. The subcellular distribution of endogenous BAT3 largely correlates with a cell type specific splicing pattern. In cells transfected with BAT3 variants, full-length and D24 BAT3 displayed nearly exclusive nuclear staining, whereas variants deleted of exon 11B showed substantial cytosolic expression. We show here that BAT3 is mainly expressed in the cytosol of Raji cells, while other cell types displayed both cytosolic and nuclear staining. Export of BAT3 from the nucleus to the cytosol is inhibited by treatment with leptomycin B, indicating that the Crm1 pathway is involved

    Subcellular localization of endogenous BAT3 in four cell types.

    No full text
    <p>HeLa cells (Adenocarcinoma), the human melanoma cell line MelJuSo, the B lymphoma Raji and monocyte-derived dendritic cells (moDCs) were plated on coverslips and stained for BAT3 using a polyclonal serum against a C-terminal peptide (middle lane). Cell nuclei (left lane) were visualized with DAPI (A) or 7AAD (B). Merged images are shown in the right lane. <b>A.</b> Immunofluorescence staining was evaluated with a standard fluorescence microscope and <b>B.</b> by confocal microscopy. Scale bars = 10 µm. <b>C.</b> Nuclear and cytosolic staining of endogenous BAT3 in Raji cells was evaluated in 10 single cells using ImageJ. MFI, mean fluorescence intensity per region of interest <b>D.</b> Western blot analysis of subcellular fractions from Raji and HeLa cells. Nuclei (N) and cytoplasm (C) were separated by SDS-PAGE and immunoblotted for BAT3, GADPH (cytosolic marker) and histone H3 (nuclear marker).</p

    Subcellular localization of BAT3 variants in transfected HeLa cells.

    No full text
    <p>Cells were transfected with BAT3 splice variants and stained after 24 hours with a monoclonal V5 antibody for evaluation by immunofluorescence microscopy. Left panel displays DAPI staining, second panel BAT3 staining, third panel merging of images and right panel shows corresponding phase contrast images. The displayed transfected cells show examples for nuclear (BAT3 full-length, upper panel), for nuclear and cytosolic (BAT3 Δ11B, middle panel) and for enhanced cytosolic staining (BAT3 Δ11B, 24, lower panel). Scale bars = 10 µm.</p

    Detection of exon sequences in BAT3 cDNA clones by PCR.

    No full text
    <p><b>A.</b> Exon-intron-structure of the <i>BAT3</i> gene. Exon sequences are indicated as arrows. The start codon for translation in exon 2 is indicated. Potentially spliced exons are numbered. Exon 1 and 7 exist in different fragment lengths, 247 bp or 271 bp for exon 1 (NCBI) and 236, 254 or 278 bp for exon 7 (NCBI, ENSEMBL). Exons highlighted in grey could be deleted without changing the reading frame. The novel exon 11B with a length of 108 bp is labeled by arrow. Exon 11B also can be deleted without a change of the reading frame of the adjacent exon sequences. <b>B.</b> Schematic presentation of BAT3 cDNA. Exon boundaries are indicated and protein-encoding exons are numbered from 2 to 25. Potentially spliced exons are highlighted in grey. The position of complementary primer pairs (a to d) for forward (f) and reverse (r) PCR are indicated by arrows. <b>C.</b> Primers indicated in B were used to characterize BAT3 cDNA clones. Digestion of two BAT3 cDNAs is shown for example. Lane M contains size standards with bp indicated on the left. Lanes a: PCR products of clones 1 and 2 exhibit a band of 280 bp (no exon 11B) or of 380 bp (with exon 11B). Lanes b: Both clones generate a PCR product of 660 bp, indicating the presence of exon 9. Lanes c: The sizes of PCR fragments from clone 1 and clone 2 are 800 bp or 950 bp, respectively. This size is consistent with the presence or absence of exon 24. Lanes d: The presence of exon 5 is verified in clones 1 and 2 by a PCR product of 400 bp.</p

    Identification of BAT3 splice variants.

    No full text
    <p><b>A.</b> Schematic presentation of BAT3 variants. BAT3 full-length containing exons 2 to 25 is shown on top (translation starts with exon 2). Identified BAT3 variants with deleted sequences are shown below. Deleted exons are indicated by triangles. Designation of the variants is shown on the right and the calculated number of amino acids (AA) of the BAT3 proteins is indicated on the left. UBL: ubiquitin-like domain, NLS: nuclear localization signal, BAG: Bcl-2 associated athanogene-domain, <b>B.</b> Expression of BAT3 isoforms. COS-7 cells were transfected with V5-tagged BAT3 cDNAs, lysed, separated by SDS-PAGE and immunoblotted for BAT3 with anti V5 antibody. BAT3 variants are indicated on the top and a molecular weight marker is shown on the left. Compared to the full length BAT3 with a molecular weight of about 130 kDa, the calculated sizes of the variants are the following: BAT3 Δ5 (128 kDa), BAT3 Δ11b (127 kDa), BAT3 Δ24 (125 kDa), BAT3 Δ5, 11b (125 kDa) and BAT3 Δ11b, 24 (122 kDa).</p
    corecore