6,393 research outputs found

    59Co-NMR Knight Shift of Superconducting Three-Layer NaxCoO2.yH2O

    Full text link
    The superconducting state of NaxCoO2.yH2O with three CoO2 layers in a unit cell has been studied by 59Co-NMR. The Knight shift measured for a peak of the NMR spectra corresponding to the external magnetic field H along one of the principal directions within the CoO2 plane, exhibits a rapid decrease with decreasing temperature T below the superconducting transition temperature Tc, indicating that the spin susceptibility is suppressed in the superconducting phase, at least, for this field direction. Because differences of the superconducting properties are rather small between this three-layer NaxCoO2.yH2O and previously reported NaxCoO2.yH2O with two CoO2 layers within a unit cell, the present result of the Knight shift studies indicates that the Cooper pairs of the former system are in the singlet state as in the latter, for which the spin susceptibility is suppressed for both directions of H parallel and perpendicular to the CoO2 plane.Comment: 5 page

    59Co Nuclear Quadrupole Resonance Studies of Superconducting and Non-superconducting Bilayer Water Intercalated Sodium Cobalt Oxides NaxCoO2.yH2O

    Full text link
    We report 59Co nuclear quadrupole resonance (NQR) studies of bilayer water intercalated sodium cobalt oxides NaxCoO2.yH2O (BLH) with the superconducting transition temperatures, 2 K < T_c <= 4.6 K, as well as a magnetic BLH sample without superconductivity. We obtained a magnetic phase diagram of T_c and the magnetic ordering temperature T_M against the peak frequency nu_3 59Co NQR transition I_z = +- 5/2 +-7/2 and found a dome shape superconducting phase. The 59Co NQR spectrum of the non-superconducting BLH shows a broadening below T_M without the critical divergence of 1/T_1 and 1/T_2, suggesting an unconventional magnetic ordering. The degree of the enhancement of 1/T_1T at low temperatures increases with the increase of nu_3 though the optimal nu_3~12.30 MHz. In the NaxCoO2.yH2O system, the optimal-T_c superconductivity emerges close to the magnetic instability. T_c is suppressed near the phase boundary at nu_3~12.50 MHz, which is not a conventional magnetic quantum critical point.Comment: 4 pages, 5 figure

    Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    Full text link
    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of 6×6×20mm36\times6\times20{\rm mm}^3 which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to readout every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6mm) was clearly resolved by flood field irradiation of 137^{137}Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors.Comment: 9 pages, 6 figures, proceedings of the 7th International Workshop on Radiation Imaging Detectors (IWORID7), submitted to NIM

    Novel phase diagram of superconductor NaxCoO2-yH2O in a 75 % relative humidity

    Full text link
    We succeeded in synthesizing the powder samples of bilayer-hydrate sodium cobalt oxide superconductors NaxCoO2-yH2O with Tc = 0 ~ 4.6 K by systematically changing the keeping duration in a 75 % relative humidity atmosphere after intercalation of water molecules. From the magnetic measurements, we found that the one-day duration sample does not show any superconductivity down to 1.8 K, and that the samples kept for 2 ~ 7 days show superconductivity, in which Tc increases up to 4.6 K with increasing the duration. Tc and the superconducting volume fraction are almost invariant between 7 days and 1month duration. The 59Co NQR spectra indicate a systematic change in the local charge distribution on the CoO2 plane with change in duration.Comment: 4 pages, 5 figures, submitted to Journal of the Physical Society of Japa

    Development of Large area Gamma-ray Camera with GSO(Ce) Scintillator Arrays and PSPMTs

    Get PDF
    We have developed a position-sensitive scintillation camera with a large area absorber for use as an advanced Compton gamma-ray camera. At first we tested GSO(Ce) crystals. We compared light output from the GSO(Ce) crystals under various conditions: the method of surface polishing, the concentration of Ce, and co-doping Zr. As a result, we chose the GSO(Ce) crystals doped with only 0.5 mol% Ce, and its surface polished by chemical etching as the scintillator of our camera. We also made a 16×\times16 cm2^2 scintillation camera which consisted of 9 position-sensitive PMTs (PSPMTs Hamamatsu flat-panel H8500), the each of which had 8×\times8 anodes with a pitch of 6 mm and coupled to 8×\times8 arrays of pixelated 6×6×\times6\times13 mm3^3 GSO(Ce) scintillators. For the readout system of the 576 anodes of the PMTs, we used chained resistors to reduce the number of readout channels down to 48 to reduce power consumption. The camera has a position resolution of less than 6mm and a typical energy resolution of 10.5% (FWHM) at 662 keV at each pixel in a large area of 16×\times16 cm2^2. %to choose the best scintillator for our project. Furthermore we constructed a 16×\times16 array of 3×3×\times3\times13 mm3^3 pixelated GSO(Ce) scintillators, and glued it to a PMT H8500. This camera had the position resolution of less than 3mm, over an area of 5×\times5 cm2^2, except for some of the edge pixels; the energy resolution was typically 13% (FWHM) at 662 keV.Comment: Proceedings of PSD7 appear in NIM

    23Na NMR study of non-superconducting double-layer hydrate NaxCoO2.yH2O

    Full text link
    We report 23Na NMR studies of the polycrystalline samples of double-layer hydrated cobalt oxides NaxCoO2.yH2O (x ~ 0.35 and y ~ 1.3) with the superconducting transition temperatures Tc < 1.8K and ~4.5K, and the dehydrated NaxCoO2 (x ~ 0.35). The hyperfine field and the electric field gradient at the Na sites in the non-hydrated Na0.7CoO2 and the dehydrated Na0.35CoO2 are found to be significantly reduced by the hydration, which indicates a strong shielding effect of the intercalated water molecules on the Na sites. The temperature dependence of 23 Na nuclear spin-lattice relaxation rate 1/23T1 of the non-superconducting double-layer hydrate NaxCoO2.yH2O is found to be similar to that of the non-hydrated Na0.7CoO2, whose spin dynamics is understood by A-type (intra-layer ferromagnetic and inter-layer antiferromagnetic) spin fluctuations. The superconducting phase is located close to the quantum critical point with the A-type magnetic instability.Comment: 4 pages, 4 figure

    Weak Magnetic Order in the Bilayered-hydrate Nax_{x}CoO2â‹…y_{2}\cdot yH2_{2}O Structure Probed by Co Nuclear Quadrupole Resonance - Proposed Phase Diagram in Superconducting Nax_xCoO2â‹…_{2} \cdot yyH2_2O

    Full text link
    A weak magnetic order was found in a non-superconducting bilayered-hydrate Nax_{x}CoO2⋅y_{2}\cdot yH2_{2}O sample by a Co Nuclear Quadrupole Resonance (NQR) measurement. The nuclear spin-lattice relaxation rate divided by temperature 1/T1T1/T_1T shows a prominent peak at 5.5 K, below which a Co-NQR peak splits due to an internal field at the Co site. From analyses of the Co NQR spectrum at 1.5 K, the internal field is evaluated to be ∼\sim 300 Oe and is in the abab-plane. The magnitude of the internal field suggests that the ordered moment is as small as ∼0.015\sim 0.015 μB\mu_B using the hyperfine coupling constant reported previously. It is shown that the NQR frequency νQ\nu_Q correlates with magnetic fluctuations from measurements of NQR spectra and 1/T1T1/T_1T in various samples. The higher-νQ\nu_Q sample has the stronger magnetic fluctuations. A possible phase diagram in Nax_{x}CoO2⋅y_{2}\cdot yH2_{2}O is depicted using TcT_c and νQ\nu_Q, in which the crystal distortion along the c-axis of the tilted CoO2_2 octahedron is considered to be a physical parameter. Superconductivity with the highest TcT_c is seemingly observed in the vicinity of the magnetic phase, suggesting strongly that the magnetic fluctuations play an important role for the occurrence of the superconductivity.Comment: 5 pages, 6 figures, submitted to J. Phys. Soc. Jp
    • …
    corecore