7,768 research outputs found

    Brown-Rho Scaling in the Strong Coupling Lattice QCD

    Full text link
    We examine the Brown-Rho scaling for meson masses in the strong coupling limit of lattice QCD with one species of staggered fermion. Analytical expression of meson masses is derived at finite temperature and chemical potential. We find that meson masses are approximately proportional to the equilibrium value of the chiral condensate, which evolves as a function of temperature and chemical potential.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics (Chiral07), Nov. 13-16, 2007, Osaka, Japa

    The origin of the phase separation in partially deuterated κ\kappa-(ET)2_2Cu[N(CN)2_2]Br studied by infrared magneto-optical imaging spectroscopy

    Full text link
    The direct observation of the phase separation between the metallic and insulating states of 75 %-deuterated κ\kappa-(ET)2_2Cu[N(CN)2_2]Br (d33d33) using infrared magneto-optical imaging spectroscopy is reported, as well as the associated temperature, cooling rate, and magnetic field dependencies of the separation. The distribution of the center of spectral weight () of d33d33 did not change under any of the conditions in which data were taken and was wider than that of the non-deuterated material. This result indicates that the inhomogenity of the sample itself is important as part of the origin of the metal - insulator phase separation.Comment: 4 pages, 3 figures, accepted for publication in Solid State Commu

    Generalized Gauge Theories and Weinberg-Salam Model with Dirac-K\"ahler Fermions

    Full text link
    We extend previously proposed generalized gauge theory formulation of Chern-Simons type and topological Yang-Mills type actions into Yang-Mills type actions. We formulate gauge fields and Dirac-K\"ahler matter fermions by all degrees of differential forms. The simplest version of the model which includes only zero and one form gauge fields accommodated with the graded Lie algebra of SU(21)SU(2|1) supergroup leads Weinberg-Salam model. Thus the Weinberg-Salam model formulated by noncommutative geometry is a particular example of the present formulation.Comment: 33 pages, LaTe

    Phase diagram at finite temperature and quark density in the strong coupling region of lattice QCD for color SU(3)

    Get PDF
    We study the phase diagram of quark matter at finite temperature (T) and chemical potential (mu) in the strong coupling region of lattice QCD for color SU(3). Baryon has effects to extend the hadron phase to a larger mu direction relative to Tc at low temperatures in the strong coupling limit. With the 1/g^2 corrections, Tc is found to decrease rapidly as g decreases, and the shape of the phase diagram becomes closer to that expected in the real world.Comment: 4 pages, 4 figures. To appear in the proceedings of the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Shanghai, China, Nov. 14-20, 2006 (Quark Matter 2006

    System-Agnostic Clinical Decision Support Services: Benefits and Challenges for Scalable Decision Support

    Get PDF
    System-agnostic clinical decision support (CDS) services provide patient evaluation capabilities that are independent of specific CDS systems and system implementation contexts. While such system-agnostic CDS services hold great potential for facilitating the widespread implementation of CDS systems, little has been described regarding the benefits and challenges of their use. In this manuscript, the authors address this need by describing potential benefits and challenges of using a system-agnostic CDS service. This analysis is based on the authors’ formal assessments of, and practical experiences with, various approaches to developing, implementing, and maintaining CDS capabilities. In particular, the analysis draws on the authors’ experience developing and leveraging a system-agnostic CDS Web service known as SEBASTIAN. A primary potential benefit of using a system-agnostic CDS service is the relative ease and flexibility with which the service can be leveraged to implement CDS capabilities across applications and care settings. Other important potential benefits include facilitation of centralized knowledge management and knowledge sharing; the potential to support multiple underlying knowledge representations and knowledge resources through a common service interface; improved simplicity and componentization; easier testing and validation; and the enabling of distributed CDS system development. Conversely, important potential challenges include the increased effort required to develop knowledge resources capable of being used in many contexts and the critical need to standardize the service interface. Despite these challenges, our experiences to date indicate that the benefits of using a system-agnostic CDS service generally outweigh the challenges of using this approach to implementing and maintaining CDS systems

    Incommensurate Mott Insulator in One-Dimensional Electron Systems close to Quarter Filling

    Full text link
    A possibility of a metal-insulator transition in molecular conductors has been studied for systems composed of donor molecules and fully ionized anions with an incommensurate ratio close to 2:1 based on a one-dimensional extended Hubbard model, where the donor carriers are slightly deviated from quarter filling and under an incommensurate periodic potential from the anions. By use of the renormalization group method, interplay between commensurability energy on the donor lattice and that from the anion potential has been studied and it has been found that an "incommensurate Mott insulator" can be generated. This theoretical finding will explain the metal-insulator transition observed in (MDT-TS)(AuI2_2)0.441_{0.441}.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at December 24 200
    corecore