24 research outputs found

    Mechanism of Evolution Shared by Gene and Language

    Full text link
    We propose a general mechanism for evolution to explain the diversity of gene and language. To quantify their common features and reveal the hidden structures, several statistical properties and patterns are examined based on a new method called the rank-rank analysis. We find that the classical correspondence, "domain plays the role of word in gene language", is not rigorous, and propose to replace domain by protein. In addition, we devise a new evolution unit, syllgram, to include the characteristics of spoken and written language. Based on the correspondence between (protein, domain) and (word, syllgram), we discover that both gene and language shared a common scaling structure and scale-free network. Like the Rosetta stone, this work may help decipher the secret behind non-coding DNA and unknown languages.Comment: 15 pages, 13 figures, 3 tabl

    Joint Beamforming and Resource Allocation for Wireless-Powered Device-to-Device Communications in Cellular Networks

    No full text

    Enhancing Utilization of SIMD-Like Accelerator for Sparse Convolutional Neural Networks

    No full text

    Convolutional Neural Network-Based Automated System for Dog Tracking and Emotion Recognition in Video Surveillance

    No full text
    This paper proposes a multiā€“convolutional neural network (CNN)-based system for the detection, tracking, and recognition of the emotions of dogs in surveillance videos. This system detects dogs in each frame of a video, tracks the dogs in the video, and recognizes the dogsā€™ emotions. The system uses a YOLOv3 model for dog detection. The dogs are tracked in real time with a deep association metric model (DeepDogTrack), which uses a Kalman filter combined with a CNN for processing. Thereafter, the dogsā€™ emotional behaviors are categorized into three typesā€”angry (or aggressive), happy (or excited), and neutral (or general) behaviorsā€”on the basis of manual judgments made by veterinary experts and custom dog breeders. The system extracts sub-images from videos of dogs, determines whether the images are sufficient to recognize the dogsā€™ emotions, and uses the long short-term deep features of dog memory networks model (LDFDMN) to identify the dogā€™s emotions. The dog detection experiments were conducted using two image datasets to verify the modelā€™s effectiveness, and the detection accuracy rates were 97.59% and 94.62%, respectively. Detection errors occurred when the dogā€™s facial features were obscured, when the dog was of a special breed, when the dogā€™s body was covered, or when the dog region was incomplete. The dog-tracking experiments were conducted using three video datasets, each containing one or more dogs. The highest tracking accuracy rate (93.02%) was achieved when only one dog was in the video, and the highest tracking rate achieved for a video containing multiple dogs was 86.45%. Tracking errors occurred when the region covered by a dogā€™s body increased as the dog entered or left the screen, resulting in tracking loss. The dog emotion recognition experiments were conducted using two video datasets. The emotion recognition accuracy rates were 81.73% and 76.02%, respectively. Recognition errors occurred when the background of the image was removed, resulting in the dog region being unclear and the incorrect emotion being recognized. Of the three emotions, anger was the most prominently represented; therefore, the recognition rates for angry emotions were higher than those for happy or neutral emotions. Emotion recognition errors occurred when the dogā€™s movements were too subtle or too fast, the image was blurred, the shooting angle was suboptimal, or the video resolution was too low. Nevertheless, the current experiments revealed that the proposed system can correctly recognize the emotions of dogs in videos. The accuracy of the proposed system can be dramatically increased by using more images and videos for training the detection, tracking, and emotional recognition models. The system can then be applied in real-world situations to assist in the early identification of dogs that may exhibit aggressive behavior

    Innovative Membrane Electrode Assembly (MEA) Fabrication for Proton Exchange Membrane Water Electrolysis

    No full text
    In order to increase the hydrogen production rate as well as ozone production at the anode side, increased voltage application and more catalyst utilization are necessary. The membrane electrode assembly (MEA) produces hydrogen/ozone via proton exchange membrane water electrolysis (PEMWE)s which gives priority to a coating method (abbreviation: ML). However, coating takes more effort and is labor-consuming. This study will present an innovative preparation method, known as flat layer (FL), and compare it with ML. FL can significantly reduce efforts and largely improve MEA production. Additionally, MEA with the FL method is potentially durable compared to ML

    Pentraxin 3 Facilitates Shrimp-Allergic Responses in IgE-Activated Mast Cells

    No full text
    Background. Since food avoidance is currently the only way to prevent allergic reactions to shrimp, a better understanding of molecular events in the induction and progression of allergy, including food allergy, is needed for developing strategies to inhibit allergic responses. Pentraxin 3 (PTX3) is rapidly produced directly from inflammatory or damaged tissues and is involved in acute immunoinflammatory responses. However, the role of PTX3 in the development of immediate IgE-mediated shrimp allergy remains unknown. Methods. Wild-type BALB/c mice were immunized intraperitoneally and were challenged with shrimp extract. Serum IgE and PTX3 levels were analyzed. RBL-2H3 cells were stimulated with either dinitrophenyl (DNP) or serum of shrimp-allergic mice, and markers of degranulation, proinflammatory mediators, and phosphorylation of signal proteins were analyzed. We further examined the effect of PTX3 in shrimp extract-induced allergic responses in vitro and in vivo. Results. Mice with shrimp allergy had increased PTX3 levels in the serum and small intestine compared with healthy mice. PTX3 augmented degranulation, the production of proinflammatory mediators, and activation of the Akt and MAPK signaling pathways in mast cells upon DNP stimulation. Furthermore, the expression of transcription factor CCAAT/enhancer-binding protein delta (CEBPD) was elevated in PTX3-mediated mast cell activation. Finally, the PTX3 inhibitor RI37 could attenuate PTX3-induced degranulation, proinflammatory mediator expression, and phosphorylation of the Akt and MAPK signaling. Conclusions. The results suggested that PTX3 can facilitate allergic responses. Our data provide new insight to demonstrate that PTX3 is a cause of allergic inflammation and that RI37 can serve as a therapeutic agent in shrimp allergy

    Investigations on the Cosputtered ITO-ZnO Transparent Electrode Ohmic Contacts to n-GaN

    No full text
    Transparent indium tin oxide (ITO) and cosputtered ITO-zinc oxide (ZnO) filmsā€™ contacts to an n-GaN epilayer were investigated. Both of these electrodesā€™ contact to the n-GaN epilayer showed Schottky behavior, although the contact resistance of the ITO-ZnO/n-GaN system was lower than that of the ITO/n-GaN system. By placing a thin Ti interlayer between the ITO-ZnO/n-GaN interface, nonalloyed ohmic contact was achieved. The inset Ti interlayer was both beneficial both for enhancing the outdiffusion of the nitrogen atoms at the surface of the n-GaN and suppressing the indiffusion of oxygen atoms from the surface of the ITO-ZnO to n-GaN. The figure-of-merit (FOM), evaluated from the specific contact resistance and optical property of the Ti/ITO-ZnO systemā€™s contact to the n-GaN epilayer, was optimized further at an adequate thickness of the Ti interlayer

    Modeling of Metabolic Equivalents (METs) during Moderate Resistance Training Exercises

    No full text
    Energy expenditure through metabolic equivalent (MET) prediction during resistance exercises in humans can be modeled by using cardiorespiratory parameters. In this study, we aimed to predict MET during six moderate-intensity resistance training sessions consisting of three different exercises. Eleven participants were recruited into two groups; an untrained (n = 5; with no resistance training experience) and a trained group (n = 6; with 2 months resistance training experience). Each participant completed six training sessions separated with a rest interval of 1ā€“2 days. While wearing a mask for indirect calorimetric measurements using Cortex Metalyzer 3B, each participant performed training sessions consisting of three types of dumbbell exercises: shoulder press, deadlift, and squat. The metabolic equivalents (METs), respiratory exchange ratio (RER), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), blood lactate (BL), and Borg rate of perceived exertion (RPE) were measured. The MET was predicted using generalized estimating equations (GEE) for repeated measure data collected during exercise and rest periods. It was observed that during exercise period, RER, HR, SBP, and BL for the training group (QIC = 187, 95% CI = āˆ’0.012~0.915, p = 0.000*~0.033*) while RER, HR, SBP, DBP, and RPE (QIC = 48, 95% CI = āˆ’0.024~0.422, p = 0.000*~0.002*) during resting period for untrained group significantly predicted MET for moderate-intensity interval resistance training. It is concluded that the cardiorespiratory variables are significantly related to MET. During exercise, RER and HR significantly predicted MET for both groups along with additional parameters of SBP and BL for the training group. While during the resting period, RER, HR, SBP, DBP, and RPE related significantly for untrained and BL for training group respectively
    corecore