2 research outputs found

    Quantum Material-Based Self-Propelled Microrobots for the Optical “On-the-Fly” Monitoring of DNA

    No full text
    Quantum dot-based materials have been found to be excellent platforms for biosensing and bioimaging applications. Herein, self-propelled microrobots made of graphene quantum dots (GQD–MRs) have been synthesized and explored as unconventional dynamic biocarriers toward the optical “on-the-fly” monitoring of DNA. As a first demonstration of applicability, GQD–MRs have been first biofunctionalized with a DNA biomarker (i.e., fluorescein amidite-labeled, FAM-L) via hydrophobic π-stacking interactions and subsequently exposed toward different concentrations of a DNA target. The biomarker–target hybridization process leads to a biomarker release from the GQD–MR surface, resulting in a linear alteration in the fluorescence intensity of the dynamic biocarrier at the nM range (1–100 nM, R2 = 0.99), also demonstrating excellent selectivity and sensitivity, with a detection limit as low as 0.05 nM. Consequently, the developed dynamic biocarriers, which combine the appealing features of GQDs (e.g., water solubility, fluorescent activity, and supramolecular π-stacking interactions) with the autonomous mobility of MRs, present themselves as potential autonomous micromachines to be exploited as highly efficient and sensitive “on-the-fly” biosensing systems. This method is general and can be simply customized by tailoring the biomarker anchored to the GQD–MR’s surface

    Table_1_Outbreak of colistin resistant, carbapenemase (blaNDM, blaOXA-232) producing Klebsiella pneumoniae causing blood stream infection among neonates at a tertiary care hospital in India.docx

    No full text
    Infections caused by multi-drug resistant Klebsiella pneumoniae are a leading cause of mortality and morbidity among hospitalized patients. In neonatal intensive care units (NICU), blood stream infections by K. pneumoniae are one of the most common nosocomial infections leading to poor clinical outcomes and prolonged hospital stays. Here, we describe an outbreak of multi-drug resistant K. pneumoniae among neonates admitted at the NICU of a large tertiary care hospital in India. The outbreak involved 5 out of 7 neonates admitted in the NICU. The antibiotic sensitivity profiles revealed that all K. pneumoniae isolates were multi-drug resistant including carbapenems and colistin. The isolates belonged to three different sequence types namely, ST-11, ST-16 and ST-101. The isolates harboured carbapenemase genes, mainly blaNDM-1, blaNDM-5 and blaOXA-232 besides extended-spectrum β-lactamases however the colistin resistance gene mcr-1, mcr-2 and mcr-3 could not be detected. Extensive environmental screening of the ward and healthcare personnel led to the isolation of K. pneumoniae ST101 from filtered incubator water, harboring blaNDM-5, blaOXA-232 and ESBL genes (blaCTX-M) but was negative for the mcr genes. Strict infection control measures were applied and the outbreak was contained. This study emphasizes that early detection of such high-risk clones of multi-drug resistant isolates, surveillance and proper infection control practices are crucial to prevent outbreaks and further spread into the community.</p
    corecore