8 research outputs found

    Parameter design of coal pillar in highwall mining under action of dynamic-static load

    Get PDF
    In view of the application of end slope shearer mining technology to recover a large amount of residual coal, the determination of reasonable width of supporting coal pillar is a key factor whether it can be safely and efficiently popularization and application, especially considering the influence of blasting vibration on the stability of supporting coal pillar. Based on the southern end slope at the open-pit coal mine of Pingshuo, field vibration test, theoretical analysis and numerical calculation were used to study the web pillar stability in open-pit highwall mining and its parameter design under the action of triangular load and blasting vibration on the side slope. Based on the theory of limit balance and the mutation theory, the stress distribution at the coal pillar was analyzed, combined with Mohr-Coulomb failure criterion. Besides, the ultimate strength function expression of coal pillar under the influence of mining height, mining width, load stress of overlying strata, cohesion and internal friction angle of coal pillar is established. The calculation formula of the maximum allowable plastic zone width and rational width of web pillar under different safety reserve factor conditions are established. The three-dimensional simple harmonic vibration response model of the supported coal pillar was established, and the blasting parameters such as the amount of single shot, elevation difference and horizontal distance of the blast center were studied on the response of the maximum instantaneous dynamic stress of the coal pillar, which revealed the influence mechanism of the blasting dynamic load effect on the width and stability of the plastic zone of the supported coal pillar and proposed the design method of the parameters of the supported coal pillar under the blasting dynamic load. The results show that the blasting vibration has a greater influence on the stability of coal pillar, and the instantaneous maximum dynamic stress response of coal pillar under the blasting dynamic load is positively correlated with the amount of single shot, and negatively correlated with the elevation difference and horizontal distance. With the increase of the maximum instantaneous dynamic stress response of coal pillar, the width of plastic zone of coal pillar increases proportionally, and the safety factor of coal pillar decays in an approximately linear pattern. The width of coal pillar under dynamic-static load is determined to be 5 m, and its reasonableness is verified by engineering practice

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Relationship between Brittleness Index and Crack Initiation Stress Ratio for Different Rock Types

    No full text
    Brittleness and crack initiation stress (σci) are important rock mechanical properties and intrinsically related to rock deformation and failure. We establish the relationship between σci and uniaxial tensile strength (σt) based on the Griffith stress criterion of brittle failure and introduce brittleness indexes B1–B4 based on the ratio of uniaxial compressive strength (σc) to σt. The crack initiation stress ratio (K) is defined as the ratio of σci to crack damage stress. The relationship between brittleness index and K is obtained from laboratory mechanics tests including uniaxial compression and Brazilian splitting tests. The results show that B1 and B2 have an inversely proportional and variant inversely proportional relationship with K, respectively, whereas no apparent relationship is observed between B3 and B4 and K. The fitting of experimental data from igneous, metamorphic, and sedimentary rocks shows that B1 and B2 have a power and linear relationship with K, respectively, whereas no functional relationship is observed between B3 and B4 and K. We collected 70 different types of uniaxial compression test data for igneous, metamorphic, and sedimentary rocks and obtained laws that are consistent within each rock type. The experimental data are used to verify K estimations using a specified constant α based on the experimental data. According to results of the limestone tests, α = 3 for σc  90 MPa (low porosity) as well as for igneous and metamorphic rocks. Estimates of K for 127 different rock types using the newly defined brittleness index are in good agreement with the experimental results. This study provides an important new brittleness index calculation method and a simple and reliable method for estimating K

    An Investigation of a Floor Treatment Plan for In-Pit Dumps with an Underlying Weak Layer

    No full text
    To effectively manage the stability of in-pit dumps with an underlying weak layer, a new plan for the treatment of a staged floor during the life of a mine was proposed in this study. Based on direct shear test results, the shear properties of contact surfaces between the weak layer, dumped spoil, and mudstone were determined. Taking the Baiyinhua No.1 Open-pit Mine as an example, a direct shear test of the contact surface between the spoil and the mudstone determined its cohesion to be 25.78 kPa, and the internal friction angle was 17.58°. The cohesion of the contact surface between the spoil and the weak layer was 7.50 kPa, and the internal friction angle was 9.72°. Different floor treatment rates were subsequently determined based on discontinuous structural surface and limit equilibrium theories. The in-pit dump plan was divided into stages based on a 10-year mine plan; a “safety reserve coefficient” was used as the conditional factor to calculate the minimum floor treatment rate. The results of a numerical simulation analysis of the slope stability of the untreated and treated inner dumps showed good agreement with results obtained by the limit equilibrium method. The position and shape of the sliding surface were also found to be similar, indicating the validity of the established numerical simulation model and the reliability of the calculated results. Based on field application and economic effect analysis, it was found that this proposed method can minimize the floor treatment rate effectively while maintaining a sufficient factor of safety. The direct economic benefit of this method was approximately 1,694,259 dollars at the Baiyinhua No.1 Coal Mine. This method is of great significance to safe and efficient production, and can be widely applied

    Study on web pillar failure mechanism during auger mining and its associated risk assessment

    No full text
    Abstract To safely and efficiently recover trapped coal under final endwalls in open cut mines, theoretical analysis and numerical calculation were used to study the stability of web pillar during auger mining. The partial ordered set (poset) evaluation model was used to develop a risk assessment methodology, and auger mining at Pingshuo Antaibao open cut coal mine was used as a field example for validation. Based on the catastrophe theory, the failure criterion of web pillar was established. From the limit equilibrium theory, the maximum allowable plastic yield zone width and minimum web pillar width were proposed under various Factor of Safety (FoS) thresholds. This in turn provides a new method for web pillar design. Based on the poset theory and combining with the risk evaluation and proposed hazard levels, input data were standardized and weighted. Subsequently, the comparison matrix, HASSE matrix and HASSE diagram were established. The study shows that: when the width of the plastic zone of web pillar exceeds 88% of the total width, web pillar may be unstable. Based on the calculation formula for the required width of web pillar, the required pillar width was 4.93 m and it was deemed as “mostly stable”. This was consistent with the field condition on site. Such that this method was validated

    Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide.

    Get PDF
    Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity
    corecore