24 research outputs found

    Valproic Acid Induces Hair Regeneration in Murine Model and Activates Alkaline Phosphatase Activity in Human Dermal Papilla Cells

    Get PDF
    Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA), a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo.Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP). VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX), a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl(2) also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice.Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth

    The Analysis of A Frequent TMPRSS3 Allele Containing P.V116M and P.V291L in A Cis Configuration among Deaf Koreans

    No full text
    We performed targeted re-sequencing to identify the genetic etiology of early-onset postlingual deafness and encountered a frequent TMPRSS3 allele harboring two variants in a cis configuration. We aimed to evaluate the pathogenicity of the allele. Among 88 cochlear implantees with autosomal recessive non-syndromic hearing loss, subjects with GJB2 and SLC26A4 mutations were excluded. Thirty-one probands manifesting early-onset postlingual deafness were sorted. Through targeted re-sequencing, we detected two families with a TMPRSS3 mutant allele containing p.V116M and p.V291L in a cis configuration, p.[p.V116M; p.V291L]. A minor allele frequency was calculated and proteolytic activity was measured. A p.[p.V116M; p.V291L] allele demonstrated a significantly higher frequency compared to normal controls and merited attention due to its high frequency (4.84%, 3/62). The first family showed a novel deleterious splice site variant—c.783-1G>A—in a trans allele, while the other showed homozygosity. The progression to deafness was noted within the first decade, suggesting DFNB10. The proteolytic activity was significantly reduced, confirming the severe pathogenicity. This frequent mutant allele significantly contributes to early-onset postlingual deafness in Koreans. For clinical implication and proper auditory rehabilitation, it is important to pay attention to this allele with a severe pathogenic potential

    Whole-Exome Sequencing Identifies a Novel Genotype-Phenotype Correlation in the Entactin Domain of the Known Deafness Gene <i>TECTA</i>

    No full text
    <div><p>Postlingual progressive hearing loss, affecting primarily the high frequencies, is the clinical finding in most cases of autosomal dominant nonsyndromic hearing loss (ADNSHL). The molecular genetic etiology of ADNSHL is extremely heterogeneous. We applied whole-exome sequencing to reveal the genetic etiology of high-frequency hearing loss in a mid-sized Korean family without any prior linkage data. Whole-exome sequencing of four family members (two affected and two unaffected), together with our filtering strategy based on comprehensive bioinformatics analyses, identified 21 potential pathogenic candidates. Sanger validation of an additional five family members excluded 20 variants, leaving only one novel variant, <i>TECTA</i> c.710C>T (p.T237I), as the strongest candidate. This variant resides in the entactin (ENT) domain and co-segregated perfectly with non-progressive high-frequency hearing loss in the family. It was absent among 700 ethnically matched control chromosomes, and the T237 residue is conserved among species, which supports its pathogenicity. Interestingly, this finding contrasted with a previously proposed genotype-phenotype correlation in which variants of the ENT domain of <i>TECTA</i> were associated with mid-frequency hearing loss. Based upon what we observed, we propose a novel “genotype to phenotype” correlation in the ENT domain of <i>TECTA</i>. Our results shed light on another important application of whole-exome sequencing: the establishment of a novel genotype-phenotype in the molecular genetic diagnosis of autosomal dominant hearing loss.</p></div
    corecore