16 research outputs found

    Disentangling the link between supplemental feeding, population density, and the prevalence of pathogens in urban stray cats

    Get PDF
    Background Supplemental feeding of free-roaming animals, including wildlife and feral or stray animals, is well known to have a substantial impact on various aspects of animal ecology including habitat use, activity patterns, and host-pathogen interactions. Among them, an increased population density (PD) of animals receiving supplemental food raises concerns regarding the transmission of pathogens in these host populations. The primary aim of this study was to investigate how supplemental feeding is associated with host PD and prevalence of pathogens with different transmission modes in urban stray cats. We hypothesized that supplemental feeding would be positively associated with host PD and the prevalence of pathogens with density-dependent transmission modes compared with pathogens with transmission modes that are considered relatively density-independent. Methods This study was conducted in six districts in Seoul, Republic of Korea which were selected based on different degrees of supplemental feeding and cat caretaker activity (CCA). The PD of stray cats was estimated by mark-recapture surveys. Stray cat blood samples (N = 302) were collected from stray cats by local animal hospitals from each district performing the trap-neuter-release which tested for eight pathogens with different transmission modes (feline immunodeficiency virus, feline leukemia virus (FeLV), feline panleukopenia virus, feline calicivirus, feline herpesvirus-1, Bartonella henselae, hemoplasma, and Toxoplasma gondii) with molecular or serological assays. Associations between the prevalence of each pathogen and PD, CCA, and sex of cats were statistically analyzed. Results In contrast to initial predictions, the cat PD was generally higher in low CCA districts. The prevalence of (FeLV), which is transmitted through direct contact, was significantly higher in areas with a high CCA, conforming to our hypothesis. On the other hand, the prevalence of feline parvovirus, which can be spread by environmental transmission, was higher in low CCA districts. The remaining six pathogens did not show any association with the CCA; however, they had a unique association with the PD or the sex of the stray cats. Discussion Our findings suggest that in addition to influencing the PD, supplemental feeding may affect the prevalence of pathogens in urban animals by mechanisms such as increased aggregation and/or altered foraging strategies, with different consequences depending on the transmission mode of each pathogen

    Discovery and Genetic Characterization of Novel Paramyxoviruses Related to the Genus Henipavirus in Crocidura Species in the Republic of Korea

    Get PDF
    Paramyxoviruses, negative-sense single-stranded RNA viruses, pose a critical threat to human public health. Currently, 78 species, 17 genera, and 4 subfamilies of paramyxoviruses are harbored by multiple natural reservoirs, including rodents, bats, birds, reptiles, and fish. Henipaviruses are critical zoonotic pathogens that cause severe acute respiratory distress and neurological diseases in humans. Using reverse transcription-polymerase chain reaction, 115 Crocidura species individuals were examined for the prevalence of paramyxovirus infections. Paramyxovirus RNA was observed in 26 (22.6%) shrews collected at five trapping sites, Republic of Korea. Herein, we report two genetically distinct novel paramyxoviruses (genus: Henipavirus): Gamak virus (GAKV) and Daeryong virus (DARV) isolated from C. lasiura and C. shantungensis, respectively. Two GAKVs and one DARV were nearly completely sequenced using next-generation sequencing. GAKV and DARV contain six genes (30 -N-P-M-F-G-L-50 ) with genome sizes of 18,460 nucleotides and 19,471 nucleotides, respectively. The phylogenetic inference demonstrated that GAKV and DARV form independent genetic lineages of Henipavirus in Crocidura species. GAKV-infected human lung epithelial cells elicited the induction of type I/III interferons, interferon-stimulated genes, and proinflammatory cytokines. In conclusion, this study contributes further understandings of the molecular prevalence, genetic characteristics and diversity, and zoonotic potential of novel paramyxoviruses in shrews

    Bartonella Species in Raccoons and Feral Cats, Georgia, USA

    Get PDF

    An exploration of the protective effect of rodent species richness on the geographical expansion of Lassa fever in West Africa.

    No full text
    BackgroundLassa fever (LF) is one of the most devastating rodent-borne diseases in West Africa, causing thousands of deaths annually. The geographical expansion of LF is also a concern; cases were recently identified in Ghana and Benin. Previous ecological studies have suggested that high natural-host biodiversity reduces the likelihood of spillover transmission of rodent-borne diseases, by suppressing the activities of reservoir species. However, the association of biodiversity with the geographical expansion of LF has not been the subject of epidemiological studies.Methodology/principal findingsWe conducted a spatial analysis based on sociodemographic, geographical, and ecological data, and found that higher rodent species richness was significantly associated with a lower risk of LF emergence in West Africa from 2008 to 2017 (Odds Ratio = 0.852, 95% Credible Interval = 0.745-0.971).Conclusions/significanceThe results reinforce the importance of the 'One Health' approach by demonstrating that a high level of biodiversity could benefit human health

    Bartonella

    No full text

    Anaplasma

    No full text

    Detection of African swine fever virus in free-ranging wild boar in Southeast Asia

    Get PDF
    African Swine Fever (ASF) is a highly contagious and fatal viral disease affecting both domestic and wild suids. The virus was introduced to Southeast Asia in early 2019 and has since spread rapidly throughout the region. Although significant efforts have been made to track and diagnose the disease in domestic pigs, very little is known about ASF in free-ranging wild boar and their potential role in maintaining the disease within Southeast Asia. Through a collaboration between government and non-government actors in Laos, Viet Nam, and Cambodia, investigations were conducted to (a) characterize the interface between domestic pigs and wild boar, (b) document risk factors for likely ASF spillover into wild boar populations by way of this interface, and (c) determine whether ASF in wild boar could be detected in each country. An extensive overlap between wild boar habitat and domestic pig ranging areas was found around villages bordering forests in all three countries, creating a high-risk interface for viral spillover between domestic pig and wild boar populations. Fifteen and three wild boar carcasses were detected through passive reporting in Laos and Viet Nam, respectively, in 2019 and early 2020. Four of five carcasses screened in Laos and two of three in Viet Nam were confirmed positive for African swine fever virus using real-time PCR. There were no confirmed reports of wild boar carcasses in Cambodia. This is the first confirmation of ASF in wild boar in Southeast Asia, the result of a probable viral spillover from domestic pigs, which highlights the importance of early reporting and monitoring of ASF in wild boar to enable the implementation of appropriate biosecurity measures

    Phylogeographic diversity and hybrid zone of Hantaan orthohantavirus collected in Gangwon Province, Republic of Korea.

    No full text
    BackgroundHantaan orthohantavirus (Hantaan virus, HTNV), harbored by Apodemus agrarius (the striped field mouse), causes hemorrhagic fever with renal syndrome (HFRS) in humans. Viral genome-based surveillance at new expansion sites to identify HFRS risks plays a critical role in tracking the infection source of orthohantavirus outbreak. In the Republic of Korea (ROK), most studies demonstrated the serological prevalence and genetic diversity of orthohantaviruses collected from HFRS patients or rodents in Gyeonggi Province. Gangwon Province is a HFRS-endemic area with a high incidence of patients and prevalence of infected rodents, ROK. However, the continued epidemiology and surveillance of orthohantavirus remain to be investigated.Methodology/principal findingsWhole-genome sequencing of HTNV was accomplished in small mammals collected in Gangwon Province during 2015-2018 by multiplex PCR-based next-generation sequencing. To elucidate the geographic distribution and molecular diversity of viruses, we conducted phylogenetic analyses of HTNV tripartite genomes. We inferred the hybrid zone using cline analysis to estimate the geographic contact between two different HTNV lineages in the ROK. The graph incompatibility based reassortment finder performed reassortment analysis. A total of 12 HTNV genome sequences were completely obtained from A. agrarius newly collected in Gangwon Province. The phylogenetic and cline analyses demonstrated the genetic diversity and hybrid zone of HTNV in the ROK. Genetic exchange analysis suggested the possibility of reassortments in Cheorwon-gun, a highly HFRS-endemic area.Conclusions/significanceThe prevalence and distribution of HTNV in HFRS-endemic areas of Gangwon Province enhanced the phylogeographic map for orthohantavirus outbreak monitoring in ROK. This study revealed the hybrid zone reflecting the genetic diversity and evolutionary dynamics of HTNV circulating in Gangwon Province. The results arise awareness of rodent-borne orthohantavirus diseases for physicians in the endemic area of ROK
    corecore