13 research outputs found

    Increased transcription in hydroxyurea-treated root meristem cells of Vicia faba

    Get PDF
    Hydroxyurea (HU), an inhibitor of ribonucleotide reductase, prevents cells from progressing through S phase by depletion of deoxyribonucleoside triphosphates. Concurrently, disruption of DNA replication leads to double-strand DNA breaks. In root meristems of Vicia faba, HU triggers cell cycle arrest (preferentially in G1/S phase) and changes an overall metabolism by global activation of transcription both in the nucleoplasmic and nucleolar regions. High level of transcription is accompanied by an increase in the content of RNA polymerase II large subunit (POLR2A). Changes in transcription activation and POLR2A content correlate with posttranslational modifications of histones that play a role in opening up chromatin for transcription. Increase in the level of H4 Lys5 acetylation indicates that global activation of transcription following HU treatment depends on histone modifications

    Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba

    Get PDF
    The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition

    Inter- and intrachromosomal asynchrony of cell division cycle events in root meristem cells of Allium cepa: possible connection with gradient of cyclin B-like proteins

    Get PDF
    Alternate treatments of Allium cepa root meristems with hydroxyurea (HU) and caffeine give rise to extremely large and highly elongated cells with atypical images of mitotic divisions, including internuclear asynchrony and an unknown type of interchromosomal asynchrony observed during metaphase-to-anaphase transition. Another type of asynchrony that cannot depend solely on the increased length of cells was observed following long-term incubation of roots with HU. This kind of treatment revealed both cell nuclei entering premature mitosis and, for the first time, an uncommon form of mitotic abnormality manifested in a gradual condensation of chromatin (spanning from interphase to prometaphase). Immunocytochemical study of polykaryotic cells using anti-β tubulin antibodies revealed severe perturbations in the microtubular organization of preprophase bands. Quantitative immunofluorescence measurements of the control cells indicate that the level of cyclin B-like proteins reaches the maximum at the G2 to metaphase transition and then becomes reduced during later stages of mitosis. After long-term incubation with low doses of HU, the amount of cyclin B-like proteins considerably increases, and a significant number of elongated cells show gradients of these proteins spread along successive regions of the perinuclear cytoplasm. It is suggested that there may be a direct link between the effects of HU-mediated deceleration of S- and G2-phases and an enhanced concentration of cyclin B-like proteins. In consequence, the activation of cyclin B-CDK complexes gives rise to an abnormal pattern of premature mitotic chromosome condensation with biphasic nuclear structures having one part of chromatin decondensed, and the other part condensed

    The Role of Cutinsomes in Plant Cuticle Formation

    Get PDF
    © 2020 by the authorsThe cuticle commonly appears as a continuous lipophilic layer located at the outer epidermal cell walls of land plants. Cutin and waxes are its main components. Two methods for cutin synthesis are considered in plants. One that is based on enzymatic biosynthesis, in which cutin synthase (CUS) is involved, is well-known and commonly accepted. The other assumes the participation of specific nanostructures, cutinsomes, which are formed in physicochemical self-assembly processes from cutin precursors without enzyme involvement. Cutinsomes are formed in ground cytoplasm or, in some species, in specific cytoplasmic domains, lipotubuloid metabolons (LMs), and are most probably translocated via microtubules toward the cuticle-covered cell wall. Cutinsomes may additionally serve as platforms transporting cuticular enzymes. Presumably, cutinsomes enrich the cuticle in branched and cross-linked esterified polyhydroxy fatty acid oligomers, while CUS1 can provide both linear chains and branching cutin oligomers. These two systems of cuticle formation seem to co-operate on the surface of aboveground organs, as well as in the embryo and seed coat epidermis. This review focuses on the role that cutinsomes play in cuticle biosynthesis in S. lycopersicum, O. umbellatum and A. thaliana, which have been studied so far; however, these nanoparticles may be commonly involved in this process in different plants.Peer reviewe

    Cadmium (II)-Induced Oxidative Stress Results in Replication Stress and Epigenetic Modifications in Root Meristem Cell Nuclei of Vicia faba

    No full text
    Among heavy metals, cadmium is considered one of the most toxic and dangerous environmental factors, contributing to stress by disturbing the delicate balance between production and scavenging of reactive oxygen species (ROS). To explore possible relationships and linkages between Cd(II)-induced oxidative stress and the consequent damage at the genomic level (followed by DNA replication stress), root apical meristem (RAM) cells in broad bean (V. faba) seedlings exposed to CdCl2 treatment and to post-cadmium recovery water incubations were tested with respect to H2O2 production, DNA double-strand breaks (γ-phosphorylation of H2AX histones), chromatin morphology, histone H3S10 phosphorylation on serine (a marker of chromatin condensation), mitotic activity, and EdU staining (to quantify cells typical of different stages of nuclear DNA replication). In order to evaluate Cd(II)-mediated epigenetic changes involved in transcription and in the assembly of nucleosomes during the S-phase of the cell cycle, the acetylation of histone H3 on lysine 5 (H3K56Ac) was investigated by immunofluorescence. Cellular responses to cadmium (II) toxicity seem to be composed of a series of interlinked biochemical reactions, which, via generation of ROS and DNA damage-induced replication stress, ultimately activate signal factors engaged in cell cycle control pathways, DNA repair systems, and epigenetic adaptations

    Changes in Epigenetic Patterns Related to DNA Replication in Vicia faba Root Meristem Cells under Cadmium-Induced Stress Conditions

    No full text
    Experiments on Vicia faba root meristem cells exposed to 150 µM cadmium chloride (CdCl2) were undertaken to analyse epigenetic changes, mainly with respect to DNA replication stress. Histone modifications examined by means of immunofluorescence labeling included: (1) acetylation of histone H3 on lysine 56 (H3K56Ac), involved in transcription, S phase, and response to DNA damage during DNA biosynthesis; (2) dimethylation of histone H3 on lysine 79 (H3K79Me2), correlated with the replication initiation; (3) phosphorylation of histone H3 on threonine 45 (H3T45Ph), engaged in DNA synthesis and apoptosis. Moreover, immunostaining using specific antibodies against 5-MetC-modified DNA was used to determine the level of DNA methylation. A significant decrease in the level of H3K79Me2, noted in all phases of the CdCl2-treated interphase cell nuclei, was found to correspond with: (1) an increase in the mean number of intranuclear foci of H3K56Ac histones (observed mainly in S-phase), (2) a plethora of nuclear and nucleolar labeling patterns (combined with a general decrease in H3T45Ph), and (3) a decrease in DNA methylation. All these changes correlate well with a general viewpoint that DNA modifications and post-translational histone modifications play an important role in gene expression and plant development under cadmium-induced stress conditions
    corecore