9 research outputs found

    Informative frequency band identification method using bi-frequency map clustering for fault detection in rotating machines

    Get PDF
    In presented work the problem of local damage detection in rolling element bearings is addressed. Usually such issues require the usage of the techniques of decomposition, separation etc. In such real industrial cases main difficulty lies in relatively low signal-to-noise ratio as well as unpredictable distribution of damage-related information in the frequency domain, hence the typical methods cannot be used. In this paper such industrial scenario is addressed and a simple yet effective approach to underlying component extraction will be discussed. Proposed method analyzes Cyclic Spectral Coherence map as starting data representation, and Expectation-Maximization is used as analytical tool to determine the informative frequency band (IFB) for impulsive component localization in the carrier frequency spectrum. Finally, based on identified IFB, the bandpass filter is constructed to extract the impulsive component from the input signal

    Mobile based vibration monitoring and its application to road quality monitoring in deep underground mine

    Get PDF
    Road quality is an important issue in everyday life for all car owners. This issue seems to be critically important in underground mines, where LHD machines are used for material transport. One of the biggest problems for LHD operation is relatively quick tires degradation. One of possible reasons might be road surface quality, indeed. However, driver's skills as well as ways of machine operation (loading, acceleration, breaking...) might also play a crucial role. Nowadays, many of machines are equipped with onboard monitoring system that allows to monitor basic parameters (speed, torque, temperatures, pressures etc.) at some predefined components. To complete the picture, we propose to use proposed already (but not for mining applications) vibration measurement for road roughness evaluation. To measure vibration acceleration is relatively easy task (we used simple smartphone here), unfortunately method of parametrization and concluding about road quality is still a challenge in mining case. In this paper we have presented a short communication related to first experimental work and some ideas how to deal with this problem using statistical tools for signal modeling

    Mobile based vibration monitoring and its application to road quality monitoring in deep underground mine

    Get PDF
    Road quality is an important issue in everyday life for all car owners. This issue seems to be critically important in underground mines, where LHD machines are used for material transport. One of the biggest problems for LHD operation is relatively quick tires degradation. One of possible reasons might be road surface quality, indeed. However, driver's skills as well as ways of machine operation (loading, acceleration, breaking...) might also play a crucial role. Nowadays, many of machines are equipped with onboard monitoring system that allows to monitor basic parameters (speed, torque, temperatures, pressures etc.) at some predefined components. To complete the picture, we propose to use proposed already (but not for mining applications) vibration measurement for road roughness evaluation. To measure vibration acceleration is relatively easy task (we used simple smartphone here), unfortunately method of parametrization and concluding about road quality is still a challenge in mining case. In this paper we have presented a short communication related to first experimental work and some ideas how to deal with this problem using statistical tools for signal modeling

    Selection of the Informative Frequency Band in a Bearing Fault Diagnosis in the Presence of Non-Gaussian Noise—Comparison of Recently Developed Methods

    No full text
    The vibration signals acquired on machines usually have complex spectral structure. As the signal of interest (SOI) is weak (especially at an early stage of damage) and covers some frequency range (around structural resonance), it requires its extraction from a raw observation. Until now, most of the techniques assumed the presence of Gaussian noise. Unfortunately, there are cases when the non-informative part of the signal (considered as the noise) is non-Gaussian due to the random disturbances or nature of the process executed by the machine. Thus, the problem can be formulated as the extraction of the SOI from the non-Gaussian noise. Recently this problem has been recognized by several authors and some new ideas have been developed. In this paper, we would like to compare these techniques for benchmark signals (Gaussian noise, cyclic impulsive signals, non-cyclic impulsive signals with random amplitudes and locations of impulses and a mixture of all of them). Our analysis will cover spectral kurtosis, kurtogram, stability index (Alpha selector), conditional variance-based selector, spectral Gini index, spectral smoothness index and infogram. Finally, a discussion on the efficiency of each method is provided

    Local Defect Detection in Bearings in the Presence of Heavy-Tailed Noise and Spectral Overlapping of Informative and Non-Informative Impulses

    No full text
    The problem of the informative frequency band (IFB) selection for local fault detection is considered in the paper. There are various approaches that are very effective in this issue. Most of the techniques are vibration-based and they are related to the cyclic impulses detection (associated with the local fault) in the background noise. However, when the background noise in the vibration signal has non-Gaussian impulsive behavior, the classical methods seem to be insufficient. Recently, new techniques were proposed by several authors and interesting approaches were tested for different non-Gaussian signals. We demonstrate the comparative analysis related to the results for three selected techniques proposed in recent years, namely the Alpha selector, Conditional Variance-based selector, and Spearman selector. The techniques seem to be effective for the IFB selection for the non-Gaussian distributed vibration signals. The main purpose of this article is to investigate how spectral overlapping of informative and non-informative impulsive components will affect diagnostic procedures. According to our knowledge, this problem was not considered in the literature for the non-Gaussian signals. Nevertheless, as we demonstrated by the simulations, the level of overlapping and the location of a center frequency of the mentioned frequency bands have a significant influence on the behavior of the considered selectors. The discussion about the effectiveness of each analyzed method is conducted. The considered problem is supported by real-world examples

    Alternative Measures of Dependence for Cyclic Behaviour Identification in the Signal with Impulsive Noise—Application to the Local Damage Detection

    No full text
    The local damage detection procedures in rotating machinery are based on the analysis of the impulsiveness and/or the periodicity of disturbances corresponding to the failure. Recent findings related to non-Gaussian vibration signals showed some drawbacks of the classical methods. If the signal is noisy and it is strongly non-Gaussian (heavy-tailed), searching for impulsive behvaior is pointless as both informative and non-informative components are transients. The classical dependence measure (autocorrelation) is not suitable for non-Gaussian signals. Thus, there is a need for new methods for hidden periodicity detection. In this paper, an attempt will be made to use alternative measures of dependence used in time series analysis that are less known in the condition monitoring (CM) community. They are proposed as alternatives for the classical autocovariance function used in the cyclostationary analysis. The methodology of the auto-similarity map calculation is presented as well as a procedure for a “quality” or “informativeness” assessment of the map is proposed. In the most complex case, the most resistant to heavy-tailed noise turned out the proposed techniques based on Kendall, Spearman and Quadrant autocorrelations. Whereas in the case of the local fault disturbed by the Gaussian noise, the most efficient proved to be a commonly-known approach based on Pearson autocorrelation. The ideas proposed in the paper are supported by simulation signals and real vibrations from heavy-duty machines

    Identification and Statistical Analysis of Impulse-Like Patterns of Carbon Monoxide Variation in Deep Underground Mines Associated with the Blasting Procedure

    No full text
    The quality of the air in underground mines is a challenging issue due to many factors, such as technological processes related to the work of miners (blasting, air conditioning, and ventilation), gas release by the rock mass and geometry of mine corridors. However, to allow miners to start their work, it is crucial to determine the quality of the air. One of the most critical parameters of the air quality is the carbon monoxide (CO) concentration. Thus, in this paper, we analyze the time series describing CO concentration. Firstly, the signal segmentation is proposed, then segmented data (daily patterns) is visualized and statistically analyzed. The method for blasting moment localization, with no prior knowledge, has been presented. It has been found that daily patterns differ and CO concentration values reach a safe level at a different time after blasting. The waiting time to achieve the safe level after blasting moment (with a certain probability) has been calculated based on the historical data. The knowledge about the nature of the CO variability and sources of a high CO concentration can be helpful in creating forecasting models, as well as while planning mining activities
    corecore