14 research outputs found

    Toxoplasma gondii Recombinant antigen AMA1: Diagnostic Utility of Protein Fragments for the Detection of IgG and IgM Antibodies

    Get PDF
    Toxoplasma gondii is an important zoonotic protozoan that infects a wide variety of vertebrates as intermediate hosts. For this reason, the diagnosis of this disease is very important and requires continuous improvement. One possibility is to use recombinant antigens in serological tests. Apical membrane antigen 1 (AMA1), a protein located in specific secretory organelles (micronemes) of T. gondii, is very interesting in regard to its potential diagnostic utility. In the present study, we attempted to identify a fragment of the AMA1 protein with a high sensitivity and specificity for the serological diagnosis of human toxoplasmosis. The full-length AMA1 and two different fragments (AMA1N and AMA1C) were produced using an Escherichia coli expression system. After purification by metal affinity chromatography, recombinant proteins were tested for their utility as antigens in enzyme-linked immunosorbent assays (ELISAs) for the detection of IgG and IgM anti-T. gondii antibodies in human and mouse immune sera. Our data demonstrate that the full-length AMA1 recombinant antigen (corresponding to amino acid residues 67–569 of the native protein) has a better diagnostic potential than its N- or C-terminal fragments. This recombinant protein strongly interacts with specific anti-T. gondii IgG (99.4%) and IgM (80.0%) antibodies, and may be used for developing new tools for diagnostics of toxoplasmosis

    Behavioral changes in mice caused by Toxoplasma gondii invasion of brain

    Get PDF
    Toxoplasma gondii, a protozoan parasite, is capable of infecting a broad range of intermediate warm-blooded hosts including humans. The parasite undergoes sexual reproduction resulting in genetic variability only in the intestine of the definitive host (a member of the cat family). The parasite seems to be capable of altering the natural behavior of the host to favor its transmission in the environment. The aim of this study was to evaluate the number of parasite cysts formed in the hippocampus and amygdala of experimentally infected mice as these regions are involved in defense behaviors control and emotion processing, and to assess the influence of the infection on mice behavior. The obtained results revealed the presence of parasite cysts both in the hippocampus and the amygdala of infected mice; however, no clear region-dependent distribution was observed. Furthermore, infected mice showed significantly diminished exploratory activity described by climbing and rearing, smaller preference for the central, more exposed part of the OF arena and engaged in less grooming behavior compared to uninfected controls

    The Immunogenic and Immunoprotective Activities of Recombinant Chimeric T. gondii Proteins Containing AMA1 Antigen Fragments

    No full text
    Toxoplasmosis, one of the most common parasitoses worldwide, is potentially dangerous for individuals with a weakened immune system, but specific immunoprophylaxis intended for humans is still lacking. Thus, efforts have been made to create an efficient universal vaccine for both animals and humans to overcome the shortcomings of currently used treatment methods and protect all hosts against toxoplasmosis. The current work represents a relatively new approach to vaccine development based on recombinant chimeric Toxoplasma gondii antigens. In the present research, three tetravalent chimeric proteins containing different portions of the parasite’s AMA1 antigen—AMA1domainI-SAG2-GRA1-ROP1L (ANSGR), AMA1domainsII,III-SAG2-GRA1-ROP1L (ACSGR) and AMA1fullprotein-SAG2-GRA1-ROP1L (AFSGR)—were tested for their immunogenic and immunoprotective capacities. All tested proteins were immunogenic, as evidenced by the triggering of specific humoral and cellular immune responses in vaccinated C3H/HeOuJ mice, defined by the production of specific IgG (IgG1/IgG2a) antibodies in vivo and synthesis of key Th1/Th2 cytokines by Toxoplasma lysate antigen-stimulated splenocytes in vitro. Although all tested preparations provided partial protection against chronic toxoplasmosis in immunized and T. gondii-challenged mice, the intensity of the generated immunoprotection depended on the fragment of the AMA1 antigen incorporated into the chimeric antigen’s structure

    The Impact of the Antigenic Composition of Chimeric Proteins on Their Immunoprotective Activity against Chronic Toxoplasmosis in Mice

    No full text
    Toxoplasmosis may pose a serious threat for individuals with weakened or undeveloped immune systems. However, to date, there is no specific immunoprophylaxis for humans. Thus, the aim of this study was to evaluate the immunogenicity of three trivalent—SAG2-GRA1-ROP1L (SGR), SAG1L-MIC1-MAG1 (SMM), and GRA1-GRA2-GRA6 (GGG)—and two tetravalent—SAG2-GRA1-ROP1-GRA2 (SGRG) and SAG1-MIC1-MAG1-GRA2 (SMMG)—chimeric T. gondii proteins, as well as their protective potential against chronic toxoplasmosis in laboratory mice. All three trivalent recombinant proteins possessed immunogenic properties, as defined by specific humoral and cellular responses in vaccinated mice characterized by the synthesis of specific IgG (IgG1/IgG2a) antibodies in vivo and the release of Th1/Th2 cytokines by stimulated splenocytes in vitro. Immunization with all three recombinant proteins provided partial protection against toxoplasmosis, although the protective capacity strongly depended on the individual antigenic composition of each preparation. The antigens providing the highest (86%) and lowest (45%) protection, SGR and SMM, respectively, were supplemented with GRA2 antigen fragment, to form the tetravalent chimeric proteins SGRG and SMMG. Further study revealed that the tetravalent preparations exhibited high immunogenic potential; however, the addition of another antigen to the recombinant protein structure had distinct effects on the protection generated, compared to that of the trivalent counterparts, depending on the antigen tested

    4-Arylthiosemicarbazide Derivatives as Toxoplasmic Aromatic Amino Acid Hydroxylase Inhibitors and Anti-inflammatory Agents

    No full text
    Approximately one-third of the human population is infected with the intracellular cosmopolitan protozoan Toxoplasma gondii (Tg), and a specific treatment for this parasite is still needed. Additionally, the increasing resistance of Tg to drugs has become a challenge for numerous research centers. The high selectivity of a compound toward the protozoan, along with low cytotoxicity toward the host cells, form the basis for further research, which aims at determining the molecular targets of the active compounds. Thiosemicarbazide derivatives are biologically active organic compounds. Previous studies on the initial preselection of 58 new 4-arylthiosemicarbazide derivatives in terms of their anti-Tg activity and selectivity made it possible to select two promising derivatives for further research. One of the important amino acids involved in the proliferation of Tg and the formation of parasitophorous vacuoles is tyrosine, which is converted by two unique aromatic amino acid hydroxylases to levodopa. Enzymatic studies with two derivatives (R: para-nitro and meta-iodo) and recombinant aromatic amino acid hydroxylase (AAHs) obtained in the E. coli expression system were performed, and the results indicated that toxoplasmic AAHs are a molecular target for 4-arylthiosemicarbazide derivatives. Moreover, the drug affinity responsive target stability assay also confirmed that the selected compounds bind to AAHs. Additionally, the anti-inflammatory activity of these derivatives was tested using THP1-Blue™ NF-κB reporter cells due to the similarity of the thiosemicarbazide scaffold to thiosemicarbazone, both of which are known NF-κB pathway inhibitors

    Evaluation of long-term immunity and protection against T. gondii after immunization with multivalent recombinant chimeric T. gondii proteins

    No full text
    Abstract Toxoplasmosis caused by the opportunistic, cosmopolitan protozoan Toxoplasma gondii is one of the most common parasitoses in the world. Although it may prove dangerous or even fatal for immunocompromised individuals, immunoprophylaxis for humans is still nonexistent. Thus, the aim of the current work was to assess the ability of two immunogenic recombinant chimeric T. gondii proteins, SAG2-GRA1-ROP1 (SGR) and SAG1-MIC1-MAG1-GRA2 (SMMG), selected in previous experiments to induce long-lasting immunity when administered with a safe adjuvant. Thus, the determination of immunological parameters and parasite challenge were performed both two weeks after the last boost injection and 6 months postvaccination. Both experimental vaccines triggered specific humoral and cellular responses in immunized C3H/HeOuJ male mice, characterized by the production of specific IgG (IgG1/IgG2a) antibodies in vivo and the synthesis of key Th1/Th2 cytokines by Toxoplasma lysate antigen-stimulated splenocytes in vitro. Although the levels of specific antibodies and cytokine release were in most cases lower six months postimmunization, the protection rates conferred by the vaccination were comparable regardless of the time after the administration of the last vaccine dose. The results indicate that both preparations induce long-lasting immunity, which makes them attractive candidates for further research aimed at boosting their immunogenicity and immunoprotective capacity

    The first study on the usefulness of recombinant tetravalent chimeric proteins containing fragments of SAG2, GRA1, ROP1 and AMA1 antigens in the detection of specific anti-Toxoplasma gondii antibodies in mouse and human sera.

    No full text
    This study presents an evaluation of four tetravalent recombinant chimeric proteins containing fragments of the Toxoplasma gondii antigens, SAG2, GRA1, ROP1 and AMA1, as potential replacements of a the soluble, whole-cell tachyzoite lysate (TLA) used in serological assays. Recombinant chimeric proteins (SAG2-GRA1-ROP1-AMA1N, AMA1N-SAG2-GRA1-ROP1, AMA1C-SAG2-GRA1-ROP1, and AMA1-SAG2-GRA1-ROP1) obtained by genetic engineering were tested for their reactivity with specific IgM and IgG antibodies from sera of experimentally infected mice and humans with T. gondii infection using an enzyme-linked immunosorbent assay (ELISA). In total 192 serum samples from patients with acquired T. gondii infection and 137 sera from seronegative individuals were examined. The reactivity of chimeric antigens with antibodies generated during T. gondii invasion was measured and compared to the results obtained in assays based on whole-cell Toxoplasma antigen. Chimeric proteins proved effective in differentiation between T. gondii-infected and uninfected individuals (100% sensitivity and specificity in the IgG ELISAs) which shows their potential usefulness as a replacements for TLA in standardized commercial tests for the serodiagnosis of toxoplasmosis. In addition, the chimeric proteins were tested for use in avidity determination. Obtained results were comparable to those of the corresponding commercial assays, suggesting the utility of these proteins for avidity assessment. Furthermore, this study demonstrated that the AMA1-SAG2-GRA1-ROP1 chimeric protein has the potential to distinguish specific antibodies from serum samples of individuals with the early and chronic phase of T. gondii infection

    Phytoecdysteroids as modulators of the Toxoplasma gondii growth rate in human and mouse cells

    No full text
    Abstract Background Searching for new effective drugs against human and animal toxoplasmosis we decided to test the anti-Toxoplasma potential of phytoecdysteroids (α-ecdysone and 20-hydroxyecdysone) characterized by the pleiotropic activity on mammalian organisms including the enhancement of host’s anti-parasitic defence. This objective was accomplished by the in vitro evaluation of T. gondii growth in phytoecdysteroid-treated immunocompetent cells of selected hosts: humans and two strains of inbred mice with genetically determined different susceptibility to toxoplasmosis. Methods Peripheral mononuclear blood cells were isolated from Toxoplasma-positive and Toxoplasma-negative women (N = 43) and men (N = 21). Non-infected mice (C57BL/6, N = 10 and BALB/c, N = 14) and mice (BALB/c, N = 10) challenged intraperitoneally with 5 tissue cysts of the T. gondii DX strain were also used in this study as a source of splenocytes. The effects of phytoecdysteroids on the viability of human PBMC and mouse splenocytes were evaluated using the MTT assay. The influence of phytoecdysteroids on PBMCs, splenocytes and T. gondii proliferation was measured using radioactivity tests (the level of 3[H] uracil incorporation by toxoplasms or 3[H] thymidine by PBMCs and splenocytes), which was confirmed by quantitative Real-Time PCR. Statistical analysis was performed using SigmaStat 3.5 (Systat Software GmbH). The best-fit IC50 curves were plotted using GraphPad Prism 6.0 (GraphPad Software, Inc.). Results Our results showed that phytoecdysteroids promote the multiplication of Toxoplasma in cultures of human or murine immune cells, in contrast to another apicomplexan parasite, Babesia gibsoni. Additionally, the tested phytoecdysteroids did not stimulate the in vitro secretion of the essential protective cytokines (IFN-γ, IL-2 and IL-10), neither by human nor by murine immune cells involved in an effective intracellular killing of the parasite. Conclusions Judging by the effect of phytoecdysteroids on the T. gondii proliferation, demonstrated for the first time in this study, it seems that these compounds should not be taken into consideration as potential medications to treat toxoplasmosis. Phytoecdysteroids included in the food are most likely not harmful for human or animal health but certain nutrients containing ecdysteroids at high concentrations could promote T. gondii proliferation in chronically infected and immunocompromised individuals. In order to assess the real impact of ecdysteroids on the course of natural T. gondii invasion, in vivo research should be undertaken because it cannot be ruled out that the in vivo effect will be different than the in vitro one. However, taking into account the possible stimulating effect of ecdysteroids on some opportunistic parasites (such as Toxoplasma or Strongyloides) further studies are necessary and should focus on the mechanisms of their action, which directly or indirectly enhance the parasite growth. Since ecdysteroids are considered as potential drugs, it is essential to determine their effect on various parasitic pathogens, which may infect the host at the same time, especially in immunocompromised individuals

    Controlling the Spatiotemporal Release of Nerve Growth Factor by Chitosan/Polycaprolactone Conduits for Use in Peripheral Nerve Regeneration

    No full text
    Tubular polymeric structures have been recognized in the treatment of peripheral nerves as comparable to autologous grafting. The best therapeutic outcomes are obtained with conduits releasing therapeutic molecules. In this study, a new approach for the incorporation of biologically active agent-loaded microspheres into the structure of chitosan/polycaprolactone conduits was developed. The support of a polycaprolactone helix formed by 3D melt extrusion was coated with dopamine in order to adsorb nerve growth factor-loaded microspheres. The complex analysis of the influence of process factors on the coverage efficiency of polycaprolactone helix by nerve grow factor-loaded microspheres was analyzed. Thus, the PCL helix characterized with the highest adsorption of microspheres was subjected to nerve growth factor release studies, and finally incorporated into chitosan hydrogel deposit through the process of electrophoretic deposition. It was demonstrated by chemical and physical tests that the chitosan/polycaprolactone conduit meets the requirements imposed on peripheral nerve implants, particularly mimicking mechanical properties of surrounding soft tissue. Moreover, the conduit may support regrowing nerves for a prolonged period, as its structure and integrity persist upon incubation in lysozyme-contained PBS solution up to 28 days at body temperature. In vitro cytocompatibility toward mHippoE-18 embryonic hippocampal cells of the chitosan/polycaprolactone conduit was proven. Most importantly, the developed conduits stimulate axonal growth and support monocyte activation, the latter is advantageous especially at early stages of nerve regeneration. It was demonstrated that, through the described approach for controlling spatiotemporal release of nerve growth factors, these biocompatible structures adjusted to the specific peripheral nerve injury case can be manufactured
    corecore