73 research outputs found
The Arteriovenous Loop: Engineering of Axially Vascularized Tissue
Background: Most of the current treatment options for large-scale tissue defects represent a serious burden for the patients, are often not satisfying, and can be associated with significant side effects. Although major achievements have already been made in the field of tissue engineering, the clinical translation in case of extensive tissue defects is only in its early stages. The main challenge and reason for the failure of most tissue engineering approaches is the missing vascularization within large-scale transplants. Summary: The arteriovenous (AV) loop model is an in vivo tissue engineering strategy for generating axially vascularized tissues using the own body as a bioreactor. A superficial artery and vein are anastomosed to create an AV loop. This AV loop is placed into an implantation chamber for prevascularization of the chamber inside, e.g., a scaffold, cells, and growth factors. Subsequently, the generated tissue can be transplanted with its vascular axis into the defect site and anastomosed to the local vasculature. Since the blood supply of the growing tissue is based on the AV loop, it will be immediately perfused with blood in the recipient site leading to optimal healing conditions even in the case of poorly vascularized defects. Using this tissue engineering approach, a multitude of different axially vascularized tissues could be generated, such as bone, skeletal or heart muscle, or lymphatic tissues. Upscaling from the small animal AV loop model into a preclinical large animal model could pave the way for the first successful attempt in clinical application. Key Messages: The AV loop model is a powerful tool for the generation of different axially vascularized replacement tissues. Due to minimal donor site morbidity and the possibility to generate patient-specific tissues variable in type and size, this in vivo tissue engineering approach can be considered as a promising alternative therapy to current treatment options of large-scale defects
The Arteriovenous Loop: Engineering of Axially Vascularized Tissue
Background: Most of the current treatment options for large-scale tissue defects represent a serious burden for the patients, are often not satisfying, and can be associated with significant side effects. Although major achievements have already been made in the field of tissue engineering, the clinical translation in case of extensive tissue defects is only in its early stages. The main challenge and reason for the failure of most tissue engineering approaches is the missing vascularization within large-scale transplants. Summary: The arteriovenous (AV) loop model is an in vivo tissue engineering strategy for generating axially vascularized tissues using the own body as a bioreactor. A superficial artery and vein are anastomosed to create an AV loop. This AV loop is placed into an implantation chamber for prevascularization of the chamber inside, e.g., a scaffold, cells, and growth factors. Subsequently, the generated tissue can be transplanted with its vascular axis into the defect site and anastomosed to the local vasculature. Since the blood supply of the growing tissue is based on the AV loop, it will be immediately perfused with blood in the recipient site leading to optimal healing conditions even in the case of poorly vascularized defects. Using this tissue engineering approach, a multitude of different axially vascularized tissues could be generated, such as bone, skeletal or heart muscle, or lymphatic tissues. Upscaling from the small animal AV loop model into a preclinical large animal model could pave the way for the first successful attempt in clinical application. Key Messages: The AV loop model is a powerful tool for the generation of different axially vascularized replacement tissues. Due to minimal donor site morbidity and the possibility to generate patient-specific tissues variable in type and size, this in vivo tissue engineering approach can be considered as a promising alternative therapy to current treatment options of large-scale defects
Cocultivation of Mesenchymal Stem Cells and Endothelial Progenitor Cells Reveals Antiapoptotic and Proangiogenic Effects
Integrating bioartificial tissues into the host vasculature is a prerequisite for tissue engineering applications. Endothelial progenitor cells (EPCs) display a high angiogenic potential and a low donor-site morbidity, making them ideal for tissue engineering applications. In our study we used a murine EPC cell line (T17b) and rat mesenchymal stem cells (MSCs) for cocultivation experiments. MSCs were cocultured with increasing T17b EPC amounts. Furthermore, MSCs in monoculture were treated with conditioned medium (CM) from T17b EPCs and T17b EPCs were treated with CM from MSCs. Proliferation and apoptosis were quantified with a bromodeoxyuridine ELISA and a DNA fragmentation ELISA, respectively. Osteogenic differentiation was detected with an alkaline phosphatase assay and bone morphogenetic protein-2 ELISA. The production of proangiogenic molecules was measured with a matrix metalloproteinase-3 and vascular endothelial growth factor ELISA as well as nitric oxide assay. We could show that T17b EPCs stimulated MSC proliferation but not vice versa. On the other hand, MSCs promoted the cell survival of EPCs. The growth-inducing and antiapoptotic effects were dependent on heterotypic cell contacts and paracrine mediators. Moreover, proangiogenic growth factors were found in the coculture. Collectively, our results indicate that the coapplication of MSCs and T17b EPCs provides new perspectives for tissue engineering applications
Evaluation of Intra-Operative Abdominal Wall Perfusion in Post-Bariatric Abdominal Dermolipectomy
Objective: Abdominal dermolipectomy after massive weight loss has become a standard procedure. However the complication rates such as wound necrosis or secondary healing complications are still high. In this context ischaemia or inadequate micro-perfusion are known as triggers of wound healing complications. Little is known about the regional perfusion patterns
before and after post-bariatric abdominal dermolipectomy. This study focuses on assessment of intraoperative micro-perfusion patterns of the abdominal tissue. Methods: The perfusion of the abdominal wall flap was monitored intra-operatively in 17 patients with an average BMI of 29.2 8 3.7 kg/m 2 after bariatric surgery. All patients underwent abdominal post-bariatric
dermolipectomy after massive weight loss while applying the non-invasive O2C laser-spectrophotometer.
The micro-perfusion parameters oxygen saturation (SO 2 ), relative haemoglobin
content (rHB) and relative blood flow (BF) were intra-operatively measured. Results: The results of this study show that the part of the abdominal fat typically resected during dermolipectomy has the lowest SO 2 before surgery. Furthermore, the results demonstrate that previously well oxygenated parts in the median line of the abdominal fat undergo a significant decrease in oxygen saturation upon mobilisation and subsequent suturing, while the caudal
wound edges show an increase of micro-perfusion parameters. Conclusion: Data show that micro-perfusion is worst in the median line of the cranial wound edge and is significantly altered after mobilisation. In addition an intra-operative increase of micro-perfusion in the caudal part of the wound edge, especially in the mons pubis area, can be measured
New aspects on efficient anticoagulation and antiplatelet strategies in sheep
Background
After addressing fundamental questions in preclinical models in vitro or in small animals in vivo, the translation into large animal models has become a prerequisite before transferring new findings to human medicine. Especially in cardiovascular, orthopaedic and reconstructive surgery, the sheep is an important in vivo model for testing innovative therapies or medical devices prior to clinical application. For a wide variety of sheep model based research projects, an optimal anticoagulation and antiplatelet therapy is mandatory. However, no standardised scheme for this model has been developed so far. Thus the efficacy of antiplatelet (acetylsalicylic acid, clopidogrel, ticagrelor) and anticoagulant (sodium enoxaparin, dabigatran etexilate) strategies was evaluated through aggregometry, anti-factor Xa activity and plasma thrombin inhibitor levels in sheep of different ages.
Results
Responses to antiplatelet and anticoagulant drugs in different concentrations were studied in the sheep. First, a baseline for the measurement of platelet aggregation was assessed in 20 sheep. The effectiveness of 225 mg clopidogrel twice daily (bid) in 2/5 sheep and 150 mg bid in 3/5 lambs could be demonstrated, while clopidogrel and its metabolite carboxylic acid were detected in every plasma sample. High dose ticagrelor (375 mg bid) resulted in sufficient inhibition of platelet aggregation in 1/5 sheep, while acetylsalicylic acid did not show any antiplatelet effect. Therapeutic anti-factor Xa levels were achieved with age-dependent dosages of sodium enoxaparin (sheep 3 mg/kg bid, lambs 5 mg/kg bid). Administration of dabigatran etexilate resulted in plasma concentrations similar to human ranges in 2/5 sheep, despite receiving quadruple dosages (600 mg bid).
Conclusion
High dosages of clopidogrel inhibited platelet aggregation merely in a low number of sheep despite sufficient absorption. Ticagrelor and acetylsalicylic acid cannot be recommended for platelet inhibition in sheep. Efficient anticoagulation can be ensured using sodium enoxaparin rather than dabigatran etexilate in age-dependent dosages. The findings of this study significantly contribute to the improvement of a safe and reliable prophylaxis for thromboembolic events in sheep. Applying these results in future translational experimental studies may help to avoid early dropouts due to thromboembolic events and associated unnecessary high animal numbers
De novo Generation of an Axially Vascularized Processed Bovine Cancellous-Bone Substitute in the Sheep Arteriovenous-Loop Model
Abstract Background/Aims: The aim of this study was to generate an axially vascularized bone substitute. The arteriovenous (AV)- loop approach in a large-animal model was applied in order to induce axial vascularization in a clinically approved processed bovine cancellous bone (PBCB) matrix of significant volume with primary mechanical stability and to assess the course of increasing axial vascularization. Methods: PBCB constructs were implanted into 13 merino sheep together with a microsurgically created AV loop in an isolation chamber. The vascularization process was monitored by sequential magnetic resonance imaging (MRI) scans. Explants were subjected to micro-computed tomography (micro-CT) analysis, histomorphometry and immunohistochemistry for CD31 and CD45. Results: Increasing axial vascularization in PBCB constructs was quantified by histomorphometry and visualized by micro-CT scans. Intravital sequential MRI scans demonstrated a significant progressive increase in perfused volume within the matrices. Immunohistochemistry confirmed endothelial lining of newly formed vessels. Conclusion: This study demonstrates successful axial vascularization of a clinically approved, mechanically stable bone substitute with a significant volume by a microsurgical AV loop in a large-animal model. Thus microsurgical transplantation of a tissue-engineered, axially vascularized and mechanically stable bone substitute with clinically relevant dimensions may become clinically feasible in the future
Vascular Tissue Engineering: Effects of Integrating Collagen into a PCL Based Nanofiber Material
The engineering of vascular grafts is a growing field in regenerative medicine. Although numerous attempts have been made, the current vascular grafts made of polyurethane (PU), Dacron®, or Teflon® still display unsatisfying results. Electrospinning of biopolymers and native proteins has been in the focus of research to imitate the extracellular matrix (ECM) of vessels to produce a small caliber, off-the-shelf tissue engineered vascular graft (TEVG) as a substitute for poorly performing PU, Dacron, or Teflon prostheses. Blended poly-ε-caprolactone (PCL)/collagen grafts have shown promising results regarding biomechanical and cell supporting features. In order to find a suitable PCL/collagen blend, we fabricated plane electrospun PCL scaffolds using various collagen type I concentrations ranging from 5% to 75%. We analyzed biocompatibility and morphological aspects in vitro. Our results show beneficial features of collagen I integration regarding cell viability and functionality, but also adverse effects like the loss of a confluent monolayer at high concentrations of collagen. Furthermore, electrospun PCL scaffolds containing 25% collagen I seem to be ideal for engineering vascular grafts
Unusual explosive growth of a squamous cell carcinoma of the scalp after electrical burn injury and subsequent coverage by sequential free flap vascular connection – a case report
BACKGROUND: Squamous cell carcinomos may arise from chronic ulcerating wounds in scars, most commonly postburn scars. Tumour growth usually takes place over months to years. Localization on the scalp is a relatively rare condition. CASE PRESENTATION: This report presents the case of a 63-year-old man with chronic ulceration of a postburn scar of the scalp due to an electrical burn 58 years ago. Sudden tumour growth started within weeks and on presentation already had extended through the skull into frontal cortex. After radical tumour resection, defect was covered with a free radial forearm flap. Local recurrence occurred 6 weeks later. Subsequent wide excision including discard of the flap and preservation of the radial vessels was followed by transfer of a free latissimus dorsi muscle flap, using the radial vessels of the first flap as recipient vessels. The patient received radiotherapy post-operatively. There were no problems with flap survivals or wound healing. Due to rapidly growing recurrence the patient died 2 months later. CONCLUSION: Explosive SCC tumour growth might occur in post-burn scars after more than 50 years. As a treatment option the use of sequential free flap connections might serve in repeated extensive tumour resections, especially in the scalp region, where suitable donor vessels are often located in distance to the defect
- …