3 research outputs found

    Solution Synthesis and Optical Properties of Transition-Metal-Doped Silicon Nanocrystals

    No full text
    A new synthetic method was developed to produce a range of transition-metal (Mn, Ni, and Cu) doped silicon nanocrystals (Si NCs). The synthesis produces monodisperse undoped and doped Si NCs with comparable average sizes as shown by transmission electron microscopy (TEM). Dopant composition was confirmed by EDX (energy dispersive X-ray spectroscopy). The optical properties of undoped and doped were compared and contrasted using absorption (steady-state and transient) and photoluminescence spectroscopy. Doped Si NCs demonstrated unique dopant-dependent optical properties compared to undoped Si NCs such as enhanced subgap absorption, and 40 nm shifts in the emission. Transient absorption (TA) measurements showed that photoexcitations in doped Si NCs relaxed via dopant states not present in undoped Si NCs

    Solution Synthesis and Optical Properties of Transition-Metal-Doped Silicon Nanocrystals

    No full text
    A new synthetic method was developed to produce a range of transition-metal (Mn, Ni, and Cu) doped silicon nanocrystals (Si NCs). The synthesis produces monodisperse undoped and doped Si NCs with comparable average sizes as shown by transmission electron microscopy (TEM). Dopant composition was confirmed by EDX (energy dispersive X-ray spectroscopy). The optical properties of undoped and doped were compared and contrasted using absorption (steady-state and transient) and photoluminescence spectroscopy. Doped Si NCs demonstrated unique dopant-dependent optical properties compared to undoped Si NCs such as enhanced subgap absorption, and 40 nm shifts in the emission. Transient absorption (TA) measurements showed that photoexcitations in doped Si NCs relaxed via dopant states not present in undoped Si NCs

    The Evolution of Quantum Confinement in CsPbBr<sub>3</sub> Perovskite Nanocrystals

    No full text
    Colloidal nanocrystals (NCs) of lead halide perovskites are considered highly promising materials that combine the exceptional optoelectronic properties of lead halide perovskites with tunability from quantum confinement. But can we assume that these materials are in the strong confinement regime? Here, we report an ultrafast transient absorption study of cubic CsPbBr<sub>3</sub> NCs as a function of size, compared with the bulk material. For NCs above ∼7 nm edge length, spectral signatures are similar to the bulk material–characterized by state-filling with uncorrelated charges–but discrete new kinetic components emerge at high fluence due to bimolecular recombination occurring in a discrete volume. Only for the smallest NCs (∼4 nm edge length) are strong quantum confinement effects manifest in TA spectral dynamics; focusing toward discrete energy states, enhanced bandgap renormalization energy, and departure from a Boltzmann statistical carrier cooling. At high fluence, we find that a hot-phonon bottleneck effect slows carrier cooling, but this appears to be intrinsic to the material, rather than size dependent. Overall, we find that the smallest NCs are understood in the framework of quantum confinement, however for the widely used NCs with edge lengths >7 nm the photophysics of bulk lead halide perovskites are a better point of reference
    corecore