44 research outputs found

    Belief propagation : an asymptotically optimal algorithm for the random assignment problem

    Get PDF
    The random assignment problem asks for the minimum-cost perfect matching in the complete n×nn\times n bipartite graph \Knn with i.i.d. edge weights, say uniform on [0,1][0,1]. In a remarkable work by Aldous (2001), the optimal cost was shown to converge to ζ(2)\zeta(2) as n→∞n\to\infty, as conjectured by M\'ezard and Parisi (1987) through the so-called cavity method. The latter also suggested a non-rigorous decentralized strategy for finding the optimum, which turned out to be an instance of the Belief Propagation (BP) heuristic discussed by Pearl (1987). In this paper we use the objective method to analyze the performance of BP as the size of the underlying graph becomes large. Specifically, we establish that the dynamic of BP on \Knn converges in distribution as n→∞n\to\infty to an appropriately defined dynamic on the Poisson Weighted Infinite Tree, and we then prove correlation decay for this limiting dynamic. As a consequence, we obtain that BP finds an asymptotically correct assignment in O(n2)O(n^2) time only. This contrasts with both the worst-case upper bound for convergence of BP derived by Bayati, Shah and Sharma (2005) and the best-known computational cost of Θ(n3)\Theta(n^3) achieved by Edmonds and Karp's algorithm (1972).Comment: Mathematics of Operations Research (2009

    The densest subgraph problem in sparse random graphs

    Get PDF
    We determine the asymptotic behavior of the maximum subgraph density of large random graphs with a prescribed degree sequence. The result applies in particular to the Erd\H{o}s-R\'{e}nyi model, where it settles a conjecture of Hajek [IEEE Trans. Inform. Theory 36 (1990) 1398-1414]. Our proof consists in extending the notion of balanced loads from finite graphs to their local weak limits, using unimodularity. This is a new illustration of the objective method described by Aldous and Steele [In Probability on Discrete Structures (2004) 1-72 Springer].Comment: Published at http://dx.doi.org/10.1214/14-AAP1091 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Cutoff for non-backtracking random walks on sparse random graphs

    Get PDF
    A finite ergodic Markov chain is said to exhibit cutoff if its distance to stationarity remains close to 1 over a certain number of iterations and then abruptly drops to near 0 on a much shorter time scale. Discovered in the context of card shuffling (Aldous-Diaconis, 1986), this phenomenon is now believed to be rather typical among fast mixing Markov chains. Yet, establishing it rigorously often requires a challengingly detailed understanding of the underlying chain. Here we consider non-backtracking random walks on random graphs with a given degree sequence. Under a general sparsity condition, we establish the cutoff phenomenon, determine its precise window, and prove that the (suitably rescaled) cutoff profile approaches a remarkably simple, universal shape
    corecore