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The densest subgraph problem in sparse

random graphs

Venkat Anantharam∗ and Justin Salez†

December 16, 2013

Abstract

We determine the asymptotic behavior of the maximum subgraph
density of large random graphs with a prescribed degree sequence.
The result applies in particular to the Erdős-Rényi model, where it
settles a conjecture of Hajek (1990). Our proof consists in extending
the notion of balanced loads from finite graphs to their local weak
limits, using unimodularity. This is a new illustration of the objective
method described by Aldous and Steele (2004).

Keywords: maximum subgraph density; load balancing; local weak
convergence; objective method; unimodularity; pairing model.
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1 Introduction

Balanced allocations Let G = (V,E) be a simple undirected locally finite

graph. Write ~E for the set of oriented edges, i.e. ordered pairs of adjacent
vertices. An allocation on G is a map θ : ~E → [0, 1] satisfying θ(i, j)+θ(j, i) =
1 for every {i, j} ∈ E. The load induced by θ at a vertex o ∈ V is

∂θ(o) :=
∑

i∼o

θ(i, o),

where ∼ means adjacency in G. θ is balanced if for every (i, j) ∈ ~E,

∂θ(i) < ∂θ(j) =⇒ θ(i, j) = 0. (1)

∗EECS Department, University of California, Berkeley
†Laboratoire de Probabilités et Modèles Aléatoires, Université Paris Diderot
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Intuitively, one may think of each edge as carrying a unit amount of load,
which has to be distributed over its end-points in such a way that the total
load is as much balanced as possible across the graph. In that respect, (1)
is a local optimality criterion: modifying the allocation along an edge cannot
further reduce the load imbalance between its end-points. When G is finite,
this condition happens to guarantee global optimality in a very strong sense.
Specifically, the following conditions are equivalent (see [16]).

(i) θ is balanced.

(ii) θ minimizes
∑

o∈V f (∂θ(o)), for some strictly convex f : [0,∞) → R.

(iii) θ minimizes
∑

o∈V f (∂θ(o)), for every convex f : [0,∞) → R.

In particular, balanced allocations exist on G and they all induce the same
loads ∂θ : V → [0,∞).

The densest subgraph problem. The load ∂θ(o) induced at a vertex
o ∈ V by some (hence every) balanced allocation θ on G has a remarkable
graph-theoretical interpretation: it measures the local density of G at o. In
particular, it was shown in [16] that the vertices receiving the highest load in
G solve the classical densest subgraph problem: the value max ∂θ coincides
with the maximum subgraph density of a subgraph in G,

̺(G) := max
∅(H⊆V

|E(H)|

|H|
,

and the set H = argmax ∂θ is the largest set achieving this maximum. This
surprising connection with a well-known and important graph parameter
justifies a deeper study of balanced loads in large graphs. For this purpose,
it is convenient to encode the various loads of G into a probability measure
on R, called the empirical load distribution of G:

LG =
1

|V |

∑

o∈V

δ∂θ(o).

Conjecture in the Erdős-Rényi case. Motivated by the above connec-
tion, Hajek [16] studied the asymptotic behavior of LG on the popular Erdős-
Rényi model, where the graph G = Gn is chosen uniformly at random among
all graphs with m = ⌊αn⌋ edges on V = {1, . . . , n}. In the regime where the
density parameter α ≥ 0 is kept fixed while n → ∞, he conjectured that the
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empirical load distribution LGn
should concentrate around a deterministic

probability measure L ∈ P(R), in the sense that

LGn

P(R)
−−−→
n→∞

L.

Coming back to the densest subgraph problem and despite the non-continuity
of the essential supremum w.r.t. to weak convergence, Hajek conjectured that

̺(Gn)
P

−−−→
n→∞

̺ := sup{t ∈ R : L ([0, t]) < 1}.

Finally, using a non-rigorous analogy with the case of finite trees, Hajek
proposed a description of L and ̺ in terms of the solutions to a distributional
fixed-point equation which will be given later. In this paper, we establish this
triple conjecture together with its analogue for various other sparse random
graphs, using the unifying framework of local weak convergence.

2 The framework of local weak convergence

This section gives a brief account of the framework of local weak convergence.
For more details, we refer to the seminal paper [6] and to the surveys [3, 2].

Rooted graphs. A rooted graph (G, o) is a graph G = (V,E) together with
a distinguished vertex o ∈ V , called the root. We let G⋆ denote the set of all
locally finite connected rooted graphs considered up to rooted isomorphism,
i.e. (G, o) ≡ (G′, o′) if there exists a bijection γ : V → V ′ that preserves
roots (γ(o) = o′) and adjacency ({i, j} ∈ E ⇐⇒ {γ(i), γ(j)} ∈ E ′). We
write [G, o]h for the (finite) rooted subgraph induced by the vertices lying at
graph-distance at most h ∈ N from o. The distance

dist ((G, o), (G′, o′)) :=
1

1 + r
where r = sup {h ∈ N : [G, o]h ≡ [G′, o′]h} ,

turns G⋆ into a complete separable metric space, see [2].

Local weak limits. Let P(G⋆) denote the set of Borel probability measures
on G⋆, equipped with the usual topology of weak convergence (see e.g. [7]).
Given a finite deterministic graph G = (V,E), we construct a random element
of G⋆ by choosing uniformly at random a vertex o ∈ V to be the root, and
restricting G to the connected component of o. The resulting law is denoted
by U(G). If {Gn}n≥1 is a sequence of finite graphs such that {U(Gn)}n≥1

admits a weak limit µ ∈ P(G⋆), we call µ the local weak limit of {Gn}n≥1.
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Edge-rooted graphs. Let G⋆⋆ denote the space of locally finite connected
graphs with a distinguished oriented edge, taken up to the natural isomor-
phism relation and equipped with the natural distance, which turns it into a
complete separable metric space. With any function f : G⋆⋆ → R is naturally
associated a function ∂f : G⋆ → R, defined by

∂f(G, o) =
∑

i∼o

f(G, i, o).

Dually, with any measure µ ∈ P(G⋆) is naturally associated a non-negative
measure ~µ on G⋆⋆, defined as follows: for any Borel function f : G⋆⋆ → [0,∞),

∫

G⋆⋆

f d~µ =

∫

G⋆

(∂f)dµ.

Note that the total mass ~µ(G⋆⋆) of the measure ~µ is precisely

deg(µ) :=

∫

G⋆

deg(G, o) dµ(G, o).

Unimodularity. It was shown in [2] that any µ ∈ P(G⋆) arising as the
local weak limit of some sequence of finite graphs satisfies

∫

G⋆⋆

f d~µ =

∫

G⋆⋆

f ∗ d~µ,

for any Borel f : G⋆⋆ → [0,∞). Here, f ∗ : G⋆⋆ → R denotes the reversal of f :

f ∗(G, i, o) = f(G, o, i).

A measure µ ∈ P(G⋆) satisfying this invariance is called unimodular, and the
set of all unimodular probability measures on G⋆ is denoted by U .

Marks on oriented edges. It will sometimes be convenient to work with
networks, i.e. graphs equipped with a map from ~E to some fixed complete
separable metric space Ξ. The above definitions extend naturally, see [2].

Unimodular Galton-Watson trees. Let π = {πn}n≥0 be a probability
distribution on N with non-zero finite mean, and let π̂ = {π̂n}n≥0 denote its
size-biased version:

π̂n =
(n + 1)πn+1∑

k kπk

(n ∈ N) (2)
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A unimodular Galton-Watson tree with degree distribution π is a random
rooted tree T obtained by a Galton-Watson branching process where the root
has offspring distribution π and all its descendants have offspring distribution
π̂. The law of T is unimodular, and is denoted by ugwt(π). Such trees play a
distinguished role as they are the local weak limits of many natural sequences
of random graphs, including those produced by the pairing model.

The pairing model. Given a sequence d = {d(i)}1≤i≤n of non-negative
integers whose sum is even, the pairing model [8, 19] generates a random
graph G[d] on V = {1, . . . , n} as follows: d(i) half-edges are attached to each
i ∈ V , and the 2m = d(1) + · · · + d(n) half-edges are paired uniformly at
random to form m edges. Loops and multiple edges are removed (a few vari-
ants exist, see [18], but they are equivalent for our purpose). Now, consider
a degree sequence dn = {dn(i)}1≤i≤n for each n ≥ 1 and assume that

∀k ∈ N,
1

n

n∑

i=1

1{dn(i)=k} −−−→
n→∞

πk, (3)

for some probability distribution π = {πk}k∈N on N with finite, non-zero
mean. Under the additional assumption that

sup
n≥1

{
1

n

n∑

i=1

d2n(i)

}
< ∞,

the local weak limit of {G[d
n
]}n≥1 is µ := ugwt(π) almost-surely, see [9].

3 Main results

Balanced loads on unimodular random graphs. Our first main result
is that the notion of balanced allocations can be extended from finite graphs
to their local weak limits, in such a way that the induced loads behave con-
tinuously with respect to local weak convergence. Define a Borel allocation
as a measurable function Θ: G⋆⋆ → [0, 1] such that Θ + Θ∗ = 1, and call it
balanced on µ ∈ U if for ~µ−a-e (G, i, o) ∈ G⋆⋆,

∂Θ(G, i) < ∂Θ(G, o) =⇒ Θ(G, i, o) = 0.

This natural definition is the right analogue of (1) when finite graphs are
replaced by unimodular measures, as demonstrated by the following result.
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Theorem 1. Let µ ∈ U be such that deg(µ) < ∞. Then,

1. Existence. There is a Borel allocation Θ0 that is balanced on µ.

2. Optimality. For any Borel allocation Θ, the following are equivalent:

(i) Θ is balanced on µ.

(ii) Θ minimizes
∫
f ◦ ∂Θ dµ for some strictly convex f : [0,∞) → R.

(iii) Θ minimizes
∫
f ◦ ∂Θ dµ for every convex f : [0,∞) → R.

(iv) ∂Θ = ∂Θ0, µ−a-e.

3. Continuity. For any sequence {Gn}n≥1 with local weak limit µ,

LGn

P(R)
−−−→
n→∞

L,

where L denotes the law of the random variable ∂Θ0 ∈ L1(G⋆, µ).

4. Variational characterization. The mean-excess function of the random
variable ∂Θ0, namely Φµ : t 7→

∫
G⋆

(∂Θ0 − t)+ dµ, is given by

Φµ(t) = max
f : G⋆ → [0, 1]

Borel

{
1

2

∫

G⋆⋆

f̂ d~µ− t

∫

G⋆

f dµ

}
, (t ∈ R)

where f̂(G, i, o) := f(G, o) ∧ f(G, i).

The special case of unimodular Galton-Watson trees. Our second
main result is an explicit resolution of the above variational problem in the
important special case where µ = ugwt(π), for an arbitrary degree distri-
bution π = {πn}n≥0 on N with finite, non-zero mean. Throughout the paper,
we let [x]10 denote the closest point to x ∈ R in the interval [0, 1], i.e.

[x]10 :=





0 if x ≤ 0

x if x ∈ [0, 1]

1 if x ≥ 1.

Given t ∈ R and Q ∈ P([0, 1]), we let Fπ,t(Q) ∈ P([0, 1]) denote the law of

[
1 − t + ξ1 + · · · + ξ

D̂

]1
0
,

where D̂ follows the size-biased distribution π̂ defined at (2), and where

{ξn}n≥1 are iid with law Q, independent of D̂. As it turns out, the solutions
to the distributional fixed-point equation Q = Fπ,t(Q) determine Φµ(t).

6



Theorem 2. When µ = ugwt(π), we have for every t ∈ R:

Φµ(t) = max
Q=Fπ,t(Q)

{
E[D]

2
P (ξ1 + ξ2 > 1) − tP (ξ1 + · · · + ξD > t)

}
,

where D ∼ π and where {ξn}n≥1 are iid with law Q, independent of D. The
maximum is over all choices of Q ∈ P([0, 1]) subject to Q = Fπ,t(Q).

Back to the densest subgraph problem. By analogy with the case of
finite graphs, we define the maximum subgraph density of a measure µ ∈ U
with deg(µ) < ∞ as the essential supremum of the random variable ∂Θ0

constructed in Theorem 1. In other words,

̺(µ) := sup{t ∈ R : Φµ(t) > 0}.

In light of Theorem 1, it is natural to seek a continuity principle of the form

(
Gn

lwc

−−−→
n→∞

µ
)

=⇒
(
̺(Gn) −−−→

n→∞
̺(µ)

)
. (4)

However, a moment of thought shows that the graph parameter ̺(G) is too
sensitive to be captured by local weak convergence. Indeed, if |V (Gn)| → ∞,
then adding a large but fixed clique to Gn will arbitrarily boost the value of
̺(Gn) without affecting the local weak limit of {Gn}n≥1. Nevertheless, our
third main result states that (4) holds for graphs produced by the pairing
model, under a mild exponential moment assumption.

Theorem 3. Consider a degree sequence d
n

= {dn(i)}1≤i≤n for each n ≥ 1.
Assume that (3) holds for some π = {πk}k≥1 with π0 + π1 < 1, and that

sup
n≥1

{
1

n

n∑

i=1

eθdn(i)

}
< ∞, (5)

for some θ > 0. Then, ̺ (G[d
n
])

P
−−−→
n→∞

̺(µ) with µ = ugwt(π).

Note that this result applies in particular to the Erdős-Rényi random
graph Gn with n vertices and m = ⌊αn⌋ edges. Indeed, the conditional law
of Gn given its (random) degree sequence d

n
is precisely G[d

n
], and {d

n
}n≥1

satisfies a-s the conditions (3) and (5) with π = Poisson(2α). Therefore,
Theorems 1, 2 and 3 settle and generalize the conjectures of Hajek [17].
Since a graph G is k−orientable (k ∈ N) if and only if ̺(G) < k, Theorem 3
also extends recent results on the k−orientability of the Erdős-Rényi random
graph [12, 11]. See also [15, 13, 22, 21] for various generalizations.
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4 Proof outline and related work.

The objective method. This work is a new illustration of the general
principles exposed in the objective method by Aldous and Steele [3]. The
latter provides a powerful framework for the unified study of sparse random
graphs and has already led to several remarkable results. Two prototypical
examples are the celebrated ζ(2) limit in the random assignment problem
due to Aldous [4], and the asymptotic enumeration of spanning trees in large
graphs by Lyons [24]. Since then, the method has been successfully applied to
various other combinatorial enumeration/optimization problems on graphs,
including (but not limited to) [28, 14, 26, 10, 22, 25, 21, 20].

Lack of correlation decay. In the problem considered here, there is a
major obstacle to a straightforward application of the objective method: the
balanced load at a vertex is not determined by the local environment around
that vertex. For example, a ball of radius h in a d−regular graph with girth
h is indistinguishable from that of the root in a d−regular tree with height h.
However, the induced load is d

2
in the first case and 1− 1

(d−1)h−1d
in the second

case. This long-range dependence gives rise to non-uniqueness issues when
one tries to properly extend the notion of balanced loads from finite to infinite
graphs. We refer the reader to [17] for a detailed study of this phenomenon,
therein called load percolation, as well as several related questions.

Relaxation. To overcome the lack of correlation decay, we introduce a
suitable relaxation of the balancing condition (1), which we call ε−balancing.
Remarkably enough, any positive value of the perturbative parameter ε suf-
fices to annihilate the long-range dependences described above. This allows
us to define a unique ε−balanced Borel allocation Θε : G⋆⋆ → [0, 1] and to
establish the continuity of the induced load ∂Θε : G⋆ → [0,∞) with respect
to local convergence (Section 5). In the limit where ε tends to 0, we fur-
ther prove that Θε converges in a certain sense, and that the limiting Borel
allocation Θ0 is balanced (Section 6). This quickly leads to a proof of Theo-
rem 1 (Section 7). In spirit, the role of the perturbative parameter ε > 0 is
comparable to that of the temperature in [10], although no Gibbs-Boltzmann
measure is involved in the present work.

Recursion on trees. As many other graph-theoretical problems, load bal-
ancing has a simple recursive structure when considered on trees. Indeed,
once the value of the allocation along a given edge {i, j} has been fixed,
the problem naturally decomposes into two independent sub-problems, cor-

8



responding to the two disjoint subtrees formed by removing {i, j}. Note,
however, that the loads of i and j must be shifted by a suitable amount to
take into account the contribution of the removed edge. The precise effect of
this shift on the loads induced at i and j defines what we call the response
functions of the two subtrees (Section 8). It is those response functions that
satisfy a recursion (Section 9). Recursions on trees automatically give rise
to distributional fixed-point equations when specialized to Galton-Watson
trees. Such equations are a common ingredient in the objective method, see
[5]. In our case this leads to the proof of Theorem 2 (Section 10).

Dense subgraphs in the pairing model. Finally, the proof of Theorem
3 (Section 11) relies on a property of random graphs with a prescribed de-
gree sequence that might be of independent interest: under an exponential
moment assumption, we use the first-moment method to prove that dense
subgraphs are extensively large with high probability. See Proposition 12 for
the precise statement, and [23, Lemma 6] for a result in the same direction.

5 ε−balancing

In all this section, G = (V,E) is a locally finite graph and ε > 0 is a fixed

parameter. An allocation θ on G is called ε−balanced if for every (i, j) ∈ ~E,

θ(i, j) =

[
1

2
+

∂θ(i) − ∂θ(j)

2ε

]1

0

. (6)

This can be viewed as a relaxed version of (1). Its interest lies in the fact
that it fixes the non-uniqueness issue on infinite graphs.

Proposition 1 (Existence, uniqueness and monotony). If G has bounded
degrees, then there is a unique ε−balanced allocation θ on G. If moreover
E ′ ⊆ E, then the ε−balanced allocation θ′ on G′ = (V,E ′) satisfies ∂θ′ ≤ ∂θ.

Proof. Existence is a consequence of Schauder’s fixed-point Theorem, see
e.g. [1, Theorem 8.2]. Now, consider E ′ ⊆ E and let θ, θ′ be ε−balanced
allocations on G,G′ respectively. Fix o ∈ V and set

I := {i ∈ V : {i, o} ∈ E ′, θ′(i, o) > θ(i, o)}.

Clearly,

∂θ′(o) − ∂θ(o) ≤
∑

i∈I

(θ′(i, o) − θ(i, o)) .
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On the other-hand, since the map x 7→
[
1
2

+ x
2ε

]1
0

is non-decreasing and Lip-

schitz with constant 1
2ε

, our assumption on θ, θ′ implies that for every i ∈ I,

θ′(i, o) − θ(i, o) ≤
1

2ε
(∂θ′(i) − ∂θ(i) − ∂θ′(o) + ∂θ(o)) .

Injecting this into the above inequality and rearranging, we obtain

∂θ′(o) − ∂θ(o) ≤
1

|I| + 2ε

∑

i∈I

(∂θ′(i) − ∂θ(i))

≤
∆

∆ + 2ε
max
i∈I

(∂θ′(i) − ∂θ(i)) , (7)

where ∆ denotes the maximum degree in G. Now, observe that ∂θ, ∂θ′ are
[0,∆]−valued, so that M := supV (∂θ′ − ∂θ) is finite. Property (7) forces
M ≤ 0, which proves the monotony E ′ ⊆ E =⇒ ∂θ′ ≤ ∂θ. In particular,
E ′ = E implies ∂θ′ = ∂θ, which in turns forces θ′ = θ, thanks to (6).

We now remove the bounded-degree assumption as follows. Fix ∆ ∈ N,
and consider the truncated graph G∆ = (V,E∆) obtained from G by isolating
all nodes having degree more than ∆, i.e.

E∆ = {{i, j} ∈ E : deg(G, i) ∨ deg(G, j) ≤ ∆} .

By construction, G∆ has degree at most ∆, and we let Θ∆
ε (G, i, j) denote

the mass sent along (i, j) ∈ ~E in the unique ε−balanced allocation on G∆,
with the understanding that Θ∆

ε (G, i, j) = 0 if {i, j} /∈ E∆. By unique-
ness, this quantity depends only on the isomorphism class of the edge-rooted
graph (G, i, j), so that we have a well-defined map Θ∆

ε : G⋆⋆ → [0, 1]. By an
immediate induction on r ∈ N, the local contraction (7) yields

[G, o]r ≡ [G′, o′]r =⇒
∣∣∂Θ∆

ε (G, o) − ∂Θ∆
ε (G′, o′)

∣∣ ≤ ∆

(
1 +

2ε

∆

)−r

.

Since the map x 7→
[
1
2

+ x
2ε

]1
0

is Lipshitz with constant 1
2ε

, it follows that

[G, i, j]r ≡ [G′, i′, j′]r =⇒
∣∣Θ∆

ε (G, i, j) − Θ∆
ε (G′, i′, j′)

∣∣ ≤ ∆

2ε

(
1 +

2ε

∆

)−r

.

Thus, the map Θ∆
ε is equicontinuous. Now, the sequence of sets {E∆}∆≥1

increases to E, so the monotony in Proposition 1 guarantees that {∂Θ∆
ε }∆≥1

converges pointwise on G⋆. Moreover, any given {i, j} ∈ E belongs to E∆ for
large enough ∆, and the definition of ε−balancing yields

Θ∆
ε (G, i, j) =

[
1

2
+

∂Θ∆
ε (G, i) − ∂Θ∆

ε (G, j)

2ε

]1

0

.
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Consequently, the pointwise limit Θε := lim∆→∞ Θ∆
ε exists in [0, 1]G⋆⋆. It

clearly satisfies Θε+Θ∗
ε = 1 and it is Borel as the pointwise limit of continuous

maps. Thus, it is a Borel allocation. Moreover, letting ∆ → ∞ above yields

Θε(G, i, j) =

[
1

2
+

∂Θε(G, i) − ∂Θε(G, j)

2ε

]1

0

. (8)

6 The ε → 0 limit

In this section, we fix µ ∈ U with deg(µ) < ∞. We write ‖f‖p for the norm
in both Lp(µ) and Lp(~µ), as which one is meant should be clear from the
context. Note that by unimodularity, we have for any Borel allocation Θ,

‖Θ‖1 =

∫

G⋆⋆

Θ d~µ =

∫

G⋆⋆

Θ + Θ∗

2
d~µ =

deg(µ)

2
. (9)

Proposition 2. The limit Θ0 := limε→0 Θε exists in L2(~µ) and is a balanced
Borel allocation on µ.

Proof. We will establish the following Cauchy property: for 0 < ε ≤ ε′,

‖Θε′ − Θε‖
2
2 ≤ ‖Θε‖

2
2 − ‖Θε′‖

2
2. (10)

This guarantees the existence of Θ0 = limε→0 Θε in L2(~µ). The rest of the
claim follows, since Borel allocations are closed in L2(~µ) and letting ε → 0 in
(8) shows that Θ0 is balanced on µ. Let us first prove (10) under the extra
assumption that µ ({(G, o) : deg(G, o) ≤ ∆}) = 1 for some ∆ ∈ N. This
ensures that f ∈ L2(~µ), where

f(G, i, o) := ∂Θε(G, o) + εΘε(G, i, o).

A straightforward manipulation of (8) shows that

f(G, i, o) > f(G, o, i) =⇒ Θε(G, i, o) = 0.

This implies Θεf + Θ∗
εf

∗ = f ∧f ∗. On the other hand, f ∧f ∗ ≤ Θε′f + Θ∗
ε′f

∗

since Θε′ + Θ∗
ε′ = 1. Thus, Θεf + Θ∗

εf
∗ ≤ Θε′f + Θ∗

ε′f
∗. Integrating against ~µ

and invoking unimodularity, we get 〈Θε −Θε′, f〉L2(~µ) ≤ 0 or more explicitly,

〈∂Θε − ∂Θε′ , ∂Θε〉L2(µ) + ε〈Θε − Θε′,Θε〉L2(~µ) ≤ 0.

But we have not yet used ε ≤ ε′, so we may exchange ε, ε′ to get

〈∂Θε′ − ∂Θε, ∂Θε′〉L2(µ) + ε′〈Θε′ − Θε,Θε′〉L2(~µ) ≤ 0.

11



Adding-up those inequalities and rearranging, we finally arrive at

(ε′ − ε)〈Θε − Θε′,Θε′〉L2(~µ) ≥ ‖∂Θε − ∂Θε′‖
2
2 + ε‖Θε − Θε′‖

2
2.

In particular, 〈Θε,Θε′〉L2(~µ) ≥ ‖Θε′‖
2
2 and (10) follows since

‖Θε′ − Θε′‖
2
2 = ‖Θε′‖

2
2 + ‖Θε‖

2
2 − 2〈Θε,Θε′〉L2(~µ).

Finally, if our extra assumption is dropped, we may use (10) with Θε, Θε′

replaced by Θ∆
ε , Θ∆

ε′ and let then ∆ → ∞. By construction, Θ∆
ε → Θε and

Θ∆
ε′ → Θε′ pointwise, and (10) follows by dominated convergence.

Proposition 3. Let {Gn}n≥1 be finite graphs with local weak limit µ. Then,

LGn

P(R)
−−−→
n→∞

L,

where L = Lµ is the law of the random variable ∂Θ0 ∈ L1(µ).

Proof. For each n ≥ 1 we let Ĝn denote the network obtained by encoding
a balanced allocation θn as [0, 1]−valued marks on the oriented edges of Gn.

The sequence {U(Ĝn)}n≥1 is tight, because {U(Gn)}n≥1 converges weakly
and the marks are [0, 1]−valued. Consider any subsequential weak limit
(G, o, θ). By construction, (G, o) has law µ and θ is a-s a balanced allocation
on G. Our goal is to establish that a-s, ∂θ(o) = ∂Θ0(G, o). Set θ′(i, j) :=
Θ0(G, i, j). Note that the random rooted network (G, o, θ, θ′) is unimodular,
since (G, o, θ) is a local weak limit of finite networks and Θ0 is Borel. Now,

E
[
(∂θ(o) − ∂θ′(o))

+
]

= E

[∑

i∼o

(θ(i, o) − θ′(i, o)) 1∂θ(o)>∂θ′(o)

]

= E

[∑

i∼o

(θ(o, i) − θ′(o, i)) 1∂θ(i)>∂θ′(i)

]

= E

[∑

i∼o

(θ′(i, o) − θ(i, o)) 1∂θ(i)>∂θ′(i)

]
,

where the second equality follows from unimodularity and the third one from
the identities θ(o, i) = 1 − θ(i, o) and θ′(o, i) = 1 − θ′(i, o). Combining the
first and last lines, we see that E

[
(∂θ(o) − ∂θ′(o))+

]
equals

1

2
E

[∑

i∼o

(θ(i, o) − θ′(i, o))
(
1∂θ(o)>∂θ′(o) − 1∂θ(i)>∂θ′(i)

)
]
.

The fact that θ, θ′ are balanced on the edge {i, o} easily implies that θ(i, o)−
θ′(i, o) and 1∂θ(o)>∂θ′(o) − 1∂θ(i)>∂θ′(i) can neither be simultaneously positive,

nor simultaneously negative. Therefore, E
[
(∂θ(o) − ∂θ′(o))+

]
≤ 0. Exchang-

ing the roles of θ, θ′ yields ∂θ(o) = ∂θ′(o) a-s, as desired.

12



7 Proof of Theorem 1

Proposition 4. Let Θ be a Borel allocation. Then for all t ∈ R,

∫

G⋆

(∂Θ − t)+ dµ ≥ sup
f : G⋆ → [0, 1]

Borel

{
1

2

∫

G⋆⋆

f̂ d~µ− t

∫

G⋆

f dµ

}
,

with equality for all t ∈ R if and only if Θ is balanced on µ.

Proof. Fix a Borel f : G⋆ → [0, 1]. Clearly, (∂Θ− t)+ ≥ (∂Θ− t)f and hence

∫

G⋆

(∂Θ − t)+ dµ ≥

∫

G⋆

f∂Θ dµ− t

∫

G⋆

f dµ. (11)

Using the unimodularity of µ and the identity Θ + Θ∗ = 1, we have

∫

G⋆

f∂Θ dµ =
1

2

∫

G⋆⋆

(f(G, o)Θ(G, i, o) + f(G, i)Θ(G, o, i)) d~µ(G, i, o)

≥
1

2

∫

G⋆⋆

(f(G, o) ∧ f(G, i)) d~µ(G, i, o). (12)

Combining (11) and (12) proves the inequality. Let us now examine the
equality case. First, equality holds in (11) if and only if for µ−a-e (G, o) ∈ G⋆,

∂Θ(G, o) > t =⇒ f(G, o) = 1

∂Θ(G, o) < t =⇒ f(G, o) = 0.

Second, equality holds in (12) if and only if for ~µ−a-e (G, i, o) ∈ G⋆⋆,

f(G, i) < f(G, o) =⇒ Θ(G, i, o) = 0.

If Θ is balanced on µ, then the choice f = 1{∂Θ>t} clearly satisfies all those
requirements, so that equality holds for each t ∈ R in the Proposition. This
proves the if part and shows that the supremum in Proposition 4 is attained,
since at least one balanced allocation exists by Proposition 2. Now, for the
only if part, suppose that equality is achieved in Proposition 4. Then the
above requirements imply that for ~µ−a-e (G, i, o) ∈ G⋆⋆,

∂Θ(G, o) < t < ∂Θ(G, i) =⇒ Θ(G, o, i) = 1.

Since this must be true for all t ∈ Q, it follows that Θ is balanced on µ.

13



Proof of Theorem 1. The existence, the continuity and the variational char-
acterization were established in Proposition 2, 3 and 4, respectively. Now,
let Θ,Θ′ be Borel allocations, and assume that Θ is balanced. Applying
Proposition 4 to Θ and Θ′ shows that for all t ∈ R,

∫

G⋆

(∂Θ − t)+ dµ ≤

∫

G⋆

(∂Θ′ − t)+ dµ.

On the other-hand, (9) guarantees that ∂Θ, ∂Θ′ have the same mean. Those
two conditions together are well-known to be equivalent to the convex order-
ing ∂Θ �cx ∂Θ′ (see e.g. [27]), meaning that for any convex f : [0,∞) → R,

∫

G⋆

(f ◦ ∂Θ) dµ ≤

∫

G⋆

(f ◦ ∂Θ′) dµ.

We have just proved (i) =⇒ (iii), and (iii) =⇒ (ii) is obvious. In particular,
Θ0 satisfies (ii) and (iii). The only if part of Proposition 4 shows that (iii) =⇒
(i). The implication (iv) =⇒ (iii) is obvious given that Θ0 satisfies (iii). Thus,
it only remains to prove (ii) =⇒ (iv). Assume that Θ minimizes

∫
(f ◦∂Θ) dµ

for some strictly convex function f : [0,∞) → R, and let m denote the value
of this minimum. Since Θ0 satisfies (ii), we also have

∫
(f ◦ ∂Θ0) dµ = m.

But then Θ′ := (Θ0 + Θ)/2 is an allocation and by convexity,

∫

G⋆

(f ◦ ∂Θ′) dµ ≤

∫

G⋆

(f ◦ ∂Θ) + (f ◦ ∂Θ0)

2
dµ = m.

This inequality contradicts the definition of m, unless it is an equality. Since
f is strictly convex, this forces ∂Θ = ∂Θ0 µ−a-e.

8 Response functions

As many other graph-theoretical problems, load balancing has a simple re-
cursive structure when specialized to trees. However, the exact formulation
of this recursion requires the possibility to condition the allocation to take
a certain value at a given edge, and we first need to give a proper meaning
to this operation. Let G = (V,E) be a locally finite graph and b : V → R a
function called the baseload. An allocation θ is balanced with respect to b if

b(i) + ∂θ(i) < b(j) + ∂θ(j) =⇒ θ(i, j) = 0,

for all (i, j) ∈ ~E. This is precisely the definition of balancing, except that the
load felt by each vertex i ∈ V is shifted by a certain amount b(i). Similarly,

14



θ is ε−balanced with respect to b if for all (i, j) ∈ ~E,

θ(i, j) =

[
1

2
+

b(i) + ∂θ(i) − b(j) − ∂θ(j)

2ε

]1

0

. (13)

The arguments used in Proposition 1 are easily extended to this situation.

Proposition 5 (Existence, uniqueness and monotony). If G has bounded
degree and if b is bounded, then there is a unique ε−balanced allocation with
baseload b. Moreover, if b′ ≤ b is bounded and if E ′ ⊆ E, then the ε−balanced
allocation θ′ on G′ = (V,E ′) with baseload b′ satisfies b′ + ∂θ′ ≤ b+ ∂θ on V .

As in Section 5, we then define an ε−balanced allocation in the general
case by considering the truncated graph G∆ with baseload the truncation of
b to [−∆,∆], and let then ∆ → ∞. Monotony guarantees the existence of a
limiting ε−balanced allocation. We shall need the following property.

Proposition 6 (Non-expansion). Let θ, θ′ be the ε−balanced allocations with
baseloads b, b′ : V → R. Set f = ∂θ + b and f ′ = ∂θ′ + b′. Then,

‖f ′ − f‖ℓ1(V ) ≤ ‖b′ − b‖ℓ1(V ).

Proof. By considering b′′ = b ∧ b′ and using the triangle inequality, we may
assume that b ≤ b′. Note that this implies f ≤ f ′, thanks to Proposition 5.
When G is finite, the claim trivially follows from conservation of mass:

∑

o∈V

(f ′(o) − f(o)) =
∑

o∈V

(b′(o) − b(o)) .

This then extends to the case where G has bounded degrees with b, b′ bounded
as follows: choose finite subsets V1 ⊆ V2 ⊆ . . . such that ∪n≥1Vn = V . For
each n ≥ 1, let θn, θ

′
n denote the ε−balanced allocations on the subgraph

induced by Vn, with baseloads the restrictions of b, b′ to Vn. Then θn → θ
and θ′n → θ′ pointwise, by compactness and uniqueness. Now, any finite
K ⊆ V is contained in Vn for large enough n, and since Vn is finite we know
that fn := ∂θn + b and f ′

n := ∂θ′n + b′ satisfy

∑

i∈K

|f ′
n(i) − fn(i)| ≤

∑

i∈Vn

|b′(i) − b(i)|.

Letting n → ∞ yields the desired result, since K is arbitrary. Finally, for
the general case, we may apply the result to the truncated graph G∆ with
baseloads the truncation of b, b′ to [−∆,∆], and let then ∆ → ∞.
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Although the uniqueness established in Proposition 5 does not extend to
the ε = 0 case, the following weaker result will be useful in the next Section.

Proposition 7 (Weak uniqueness). Assume that θ, θ′ are balanced with re-
spect to b and that ‖∂θ − ∂θ′‖ℓ1(V ) < ∞. Then, ∂θ = ∂θ′.

Proof. Fix δ > 0. Then the level set S := {j ∈ V : ∂θ′(j) − ∂θ(j) > δ} must
be finite. Therefore, it satisfies the conservation of mass :

∑

j∈S

∂θ′(j) − ∂θ(j) =
∑

(i,j)∈E(V−S,S)

θ′(i, j) − θ(i, j). (14)

Now, if (i, j) ∈ E(V − S, S) then clearly, ∂θ′(i) − ∂θ(i) < ∂θ′(j) − ∂θ(j).
Consequently, at least one of the following inequalities must hold :

b(j) − b(i) < ∂θ(i) − ∂θ(j) or b(j) − b(i) > ∂θ′(i) − ∂θ′(j).

The first one implies θ(i, j) = 1 and the second θ′(i, j) = 0, since θ, θ′ are
balanced with respect to b. In either case, we have θ′(i, j) ≤ θ(i, j). Thus,
the right-hand side of (14) is non-positive, hence so must the left-hand side
be. This contradicts the definition of S unless S = ∅, i.e. ∂θ′ ≤ ∂θ+ δ. Since
δ is arbitrary, we conclude that ∂θ′ ≤ ∂θ. Equality follows by symmetry.

Given o ∈ V and x ∈ R, we set fε(G,o)(x) = x + ∂θ(o) where θ is
the ε−balanced allocation with baseload x at o and 0 elsewhere. We call
fε(G,o) : R → R the response function of the rooted graph (G, o). Propositions
5 and 6 guarantee that fε(G,o) is non-decreasing and non-expansive, i.e.

x ≤ y =⇒ 0 ≤ fε(G,o)(y) − fε(G,o)(x) ≤ y − x. (15)

Note for future use that the definition of fε(G,o)(x) also implies

0 ≤ fε(G,o)(x) − x ≤ deg(G, o). (16)

When G is a tree, response functions turn out to satisfy a simple recursion.

9 A recursion on trees

We are now ready to formulate the promised recursion. Fix a tree T = (V,E).
Deleting {i, j} ∈ E creates two disjoint subtrees, which we view as rooted at
i and j and denote Ti→j and Tj→i, respectively.
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Proposition 8. For any o ∈ V , the response function fε(T,o) is invertible and

{
fε(T,o)

}−1
= Id −

∑

i∼o

[
1 −

{
fεTi→o

+ ε(2Id − 1)
}−1
]1
0
. (17)

Proof. fεTi→o
+ ε(2Id− 1) increases continuously from R onto R, so its inverse

{fεTi→o
+ε(2Id−1)}−1 exists and increases continuously from R onto R. Con-

sequently, the function g : R → R appearing in the right-hand side of (17) is
itself continuously increasing from R onto R, hence invertible. Given x ∈ R,
it now remains to prove that t := fε(T,o)(x) satisfies g(t) = x. By definition,

t = x + ∂θ(o), (18)

where θ denotes the ε−balanced allocation on T with baseload x at o and 0
elsewhere. Now fix i ∼ o. The restriction of θ to Ti→o is clearly an ε−balanced
allocation on Ti→o with baseload θ(o, i) at i and 0 elsewhere. This is precisely
the allocation appearing in the definition of fεTi→o

(θ(o, i)), hence

fεTi→o
(θ(o, i)) = ∂θ(i).

Thus, the fact that θ is ε−balanced along (o, i) may now be rewritten as

θ(o, i) =

[
1

2
+

t− fεTi→o
(θ(o, i))

2ε

]1

0

. (19)

But by definition, xi := {fεTi→o
+ ε(2Id − 1)}−1(t) is the unique solution to

xi =
1

2
+

t− fεTi→o
(xi)

2ε
. (20)

Comparing (19) and (20), we see that θ(o, i) = [xi]
1
0, i.e. θ(i, o) = [1 − xi]

1
0.

Re-injecting this into (18), we arrive exactly at the desired x = g(t).

In the remainder of this section, we fix a vanishing sequence {εn}n≥1 and
study the pointwise limit f = limn→∞ fεn(T,o), when it exists. Not that f needs

not be invertible. However, (15) and (16) guarantee that f is non-decreasing
with f(±∞) = ±∞, so that is admits a well-defined right-continuous inverse

f−1(t) := sup{x ∈ R : f(x) ≤ t} (t ∈ R).

Proposition 9. Assume that ℓo := limn→∞ ∂Θεn(T, o) exists for each o ∈ V .

Then fTi→j
:= limn→∞ fεnTi→j

exists pointwise for each (i, j) ∈ ~E, and

f−1
Ti→j

(t) = t−
∑

k∼i,k 6=j

[
1 − f−1

Tk→i
(t)
]1
0
, (21)
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for every t ∈ R. Moreover, for every o ∈ V ,

ℓo > t ⇐⇒
∑

i∼o

[
1 − f−1

Ti→o
(t)
]1
0
> t. (22)

Proof. Fix (i, j) ∈ ~E, x ∈ R and let us show that fTi→j
(x) := limn→∞ fεnTi→j

(x)

exists. By definition, fεTi→j
(x) = x + ∂θε(i), where θε is the ε−balanced

allocation on Ti→j with baseload x at i and 0 elsewhere. Since the set of
allocations on Ti→j is compact, it is enough to consider two subsequential
limits θ, θ′ of {θεn}n≥1 and prove that ∂θ = ∂θ′. Passing to the limit in (13),
we know that θ, θ′ are balanced with respect to the above baseload. Writing
Vi→j for the vertex set of Ti→j, Lemma 7 reduces our task to proving

‖∂θ − ∂θ′‖ℓ1(Vi→j) < ∞. (23)

Let θ⋆ε be the restriction of Θε to Ti→j. Thus, θ⋆ε is an allocation on Ti→j and
it is ε−balanced with baseload θ⋆ε(j, i) at i and 0 elsewhere. Consequently,
Proposition 6 guarantees that for any finite K ⊆ Vi→j \ {i},

‖∂θε − ∂θ⋆ε‖ℓ1(K) ≤ |x| + 1.

Applying this to ε, ε′ > 0 and using the triangle inequality, we obtain

‖∂θε − ∂θε′‖ℓ1(K) ≤ 2|x| + 2 + ‖∂θ⋆ε − ∂θ⋆ε′‖ℓ1(K).

Since {∂θ⋆εn}n≥1 converges by assumption, we may pass to the limit to obtain
‖∂θ − ∂θ′‖ℓ1(K) ≤ 2|x| + 2. But K is arbitrary, so (23) follows. This shows
that fTi→j

:= limn→∞ fεnTi→j
exists pointwise. We now recall two classical facts

about non-decreasing functions f : R → R with f(±∞) = ±∞. First, f−1 is
non-decreasing, so that its discontinuity set D(f−1) is countable. Second, the
pointwise convergence fn → f implies f−1

n (t) → f−1(t) for every t ∈ R\D(f−1).
Consequently, letting ε → 0 in (17) proves (21) for t /∈ D := D(f−1

Ti→j
) ∪⋃

k∼i D(f−1
Tk→i

). The equality then extends to R since D is countable and both
sides of (21) are right-continuous in t. Replacing Ti→j with (T, o) in the
above argument shows that f(T,o) := limn→∞ fεn(T,o) exists and satisfies

f−1
(T,o)(t) = t−

∑

i∼o

[
1 − f−1

Ti→o
(t)
]1
0

(t ∈ R).

Finally, recall that fεn(T,o)(0) = ∂Θεn(T, o) for all n ≥ 1, so that f(T,o)(0) = ℓo.

But f(T,o)(0) > t ⇐⇒ f−1
(T,o)(t) < 0 by definition of f−1

(T,o), so (22) follows.
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10 Proof of Theorem 2

In all this section, we consider networks rather than graphs, where each
oriented edge (i, j) is equipped with a mark ξ(i, j) ∈ [0, 1]. Given t ∈ R, we
shall be interested in marks that satisfy the local recursion

ξ(i, j) =

[
1 − t +

∑

k∼i,k 6=j

ξ(k, i)

]1

0

, (i, j) ∈ ~E. (24)

We start with a simple Lemma.

Lemma 1. Under (24), ∂ξ(i) ∧ ∂ξ(j) > t ⇐⇒ ξ(i, j) + ξ(j, i) > 1.

Proof. We prove the equivalence case by case. Note that by assumption,

ξ(i, j) = [1 − t + ∂ξ(i) − ξ(j, i)]10 (25)

ξ(j, i) = [1 − t + ∂ξ(j) − ξ(i, j)]10 . (26)

• If 0 < ξ(i, j), ξ(j, i) < 1, then the equivalence trivially holds since we
may safely remove the truncation [·]10 from (25)-(26) to obtain

∂ξ(i) − t = ξ(i, j) + ξ(j, i) − 1 = ∂ξ(j) − t.

• If ξ(j, i) = 0, then we have 1 − t + ∂ξ(j) − ξ(i, j) ≤ 0 thanks to (26),
and hence ∂ξ(j) ≤ t. Thus, both sides of the equivalence are false.

• If ξ(i, j) = 1, ξ(j, i) > 0, then using ξ(i, j) = 1 in (25) gives ∂ξ(i)− t ≥
ξ(j, i) and since ξ(j, i) > 0 we obtain ∂ξ(i) > t. On the other hand,
using ξ(j, i) > 0 in (26) gives ∂ξ(j) > t+ξ(i, j)−1 and since ξ(i, j) = 1
we obtain ∂ξ(j) > t. Thus, both sides of the equivalence are true.

The other possible cases follow by exchanging ξ(i, j) and ξ(j, i).

We are ready for the proof of Theorem 2, which we divide into two parts.

Proposition 10. Let Q ∈ P([0, 1]) be any solution to Q = Fπ,t(Q). Then,

Φµ(t) ≥
E[D]

2
P (ξ1 + ξ2 > 1) − tP (ξ1 + · · · + ξD > t) ,

where D ∼ π and where {ξn}n≥1 are i.i.d. with law Q, independent of D.
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Proof. Kolmogorov’s extension Theorem allows us to convert the consistency
equation Q = Fπ,t(Q) into a random rooted tree T ∼ ugwt(π) equipped with
marks satisfying (24) a-s, such that conditionally on the structure of [T, o]h,
the marks from generation h to h−1 are iid with law Q. This random rooted
network is easily checked to be unimodular. Thus, we may apply Proposition
4 with f = 1∂ξ>t. By Lemma 1, we have f̂ = 1ξ+ξ∗>1 and hence

Φµ(t) ≥
1

2
~µ (ξ + ξ∗ > 1) − tµ(∂ξ > t).

This is precisely the desired result, since we have by construction

µ(∂ξ > t) = P (ξ1 + · · · + ξD > t) , ~µ (ξ + ξ∗ > 1) = E[D]P (ξ1 + ξ2 > 1)

where D ∼ π and ξ1, ξ2, . . . are iid with law Q, independent of D.

Proposition 11. There is a solution Q ∈ P([0, 1]) to Q = Fπ,t(Q) such that

Φµ(t) =
E[D]

2
P (ξ1 + ξ2 > 1) − tP (ξ1 + · · · + ξD > t) .

where D ∼ π and where {ξn}n≥1 are iid with law Q, independent of D.

Proof. Let T ∼ ugwt(π). Thanks to Proposition 2, we have

∂Θε(T, o)
L2

−−→
ε→0

∂Θ0(T, o).

In particular, there is a deterministic vanishing sequence ε1, ε2, . . . along
which the convergence holds almost surely. This almost-sure convergence
automatically extends from the root to all vertices, since everything shows
up at the root of a unimodular random network [2, Lemma 2.3]. Therefore,
T satisfies almost-surely the assumption of Proposition 9. Consequently, the
marks ξ(i, j) := [1 − f−1

Ti→j
(t)]10 satisfy (24) almost-surely, and

∂Θ0(T, o) > t ⇐⇒ ∂ξ(o) > t.

This ensures that f = 1∂ξ>t satisfies the requirement for equality in Propo-
sition 4, and we may then use Lemma 1 to rewrite the conclusion as

Φµ(t) =
1

2
~µ (ξ + ξ∗ > 1) − tµ(∂ξ > t).

Now, D = deg(T, o) has law π, and conditionally on D, the subtrees {Ti→o}i∼o

are iid copies of a homogenous Galton-Watson tree T̂ with offspring distri-
bution π̂. Since ξ(i, o) depends only on the subtree Ti→o, we obtain

µ(∂ξ > t) = P (ξ1 + · · · + ξD > t) , ~µ (ξ + ξ∗ > 1) = E[D]P (ξ1 + ξ2 > 1)

where ξ1, ξ2, . . . are iid copies of [1 − f−1

T̂
(t)]10, independent of D. In turn,

removing the root of T̂ splits it into a π̂−distributed number of iid copies of
T̂, so that the law Q of [1 − f−1

T̂
(t)]10 satisfies Q = Fπ,t(Q).
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11 Proof of Theorem 3

Fix a degree sequence d = {d(i)}1≤i≤n and set 2m =
∑n

i=1 d(i).

Lemma 2. The number of edges of G[d] with both end-points in S ⊆ {1, . . . , n}

is stochastically dominated by a Binomial with mean 1
m

(∑
i∈S di

)2
.

Proof. We assume that s :=
∑

i∈S di < m, otherwise the claim is trivial. It is
classical that G[d] can be generated sequentially: at each step 1 ≤ t ≤ m, a
half-edge is selected and paired with a uniformly chosen other half-edge. The
selection rule is arbitrary, and we choose to give priority to half-edges whose
end-point lies in S. Let Xt be the number of edges with both end-points in S
after t steps. Then {Xt}0≤t≤m is a Markov chain with X0 = 0 and transitions

Xt+1 :=

{
Xt + 1 with conditional probability (s−Xt−t−1)+

2m−2t−1

Xt otherwise.

For every 0 ≤ t < m, the fact that Xt ≥ 0 ensures that

(s−Xt − t− 1)+

2m− 2t− 1
≤

s− t− 1

2m− 2t− 1
1(t<s) ≤

s

2m
1(t<s),

where the second inequality uses the condition s < m. This shows that Xm is
in fact stochastically dominated by a Binomial

(
s, s

2m

)
, which is enough.

Lemma 3. Let Xk,r be the number of induced subgraphs with k vertices and
at least r edges in G[d]. Then, for any θ > 0,

E [Xk,r] ≤

(
2r

θ2m

)r
(
e

k

n∑

i=1

eθdi

)k

.

Proof. First observe that if Z ∼ Bin(n, p) then by a simple union-bound,

P (Z ≥ r) ≤

(
n

r

)
pr ≤

nrpr

r!
=

E[Z]r

r!
.

Thus, by Lemma 2, the number ZS of edges with both end-points in S satisfies

P (ZS ≥ r) ≤
1

r!mr

(∑

i∈S

di

)2r

≤

(
2r

θ2m

)r∏

i∈S

eθdi ,

where we have used the crude bounds x2r ≤ (2r)!ex and (2r)!/r! ≤ (2r)r.
The result follows by summing over all S with |S| = k and observing that

∑

|S|=k

∏

i∈S

eθdi ≤
1

k!

(
n∑

i=1

eθdi

)k

≤

(
k

e

n∑

i=1

eθdi

)k

.

The second inequality follows from the classical lower-bound k! ≥
(
k
e

)k
.

21



We now fix {d
n
}n≥1 as in Theorem 3. Let Z

(n)
δ,t be the number of subsets

∅ ( S ⊆ {1, . . . , n} such that |S| ≤ δn and |E(S)| ≥ t|S| in Gn := G[d
n
].

Proposition 12. For each t > 1, there is δ > 0 and κ < ∞ such that

E
[
Z

(n)
δ,t

]
≤ κ

(
lnn

n

)t−1

,

uniformly in n ≥ 1. In particular, Z
(n)
δ,t = 0 w.h.p. as n → ∞.

Proof. The assumptions of Theorem 3 guarantee that for some θ > 0,

α := inf
n≥1

{
1

n

n∑

i=1

dn(i)

}
> 0 and λ := sup

n≥1

{
1

n

∑

i∈V

eθdn(i)

}
< ∞.

Now, fix t > 1 and choose δ > 0 small enough so that f(δ) < 1, where

f(δ) :=

(
1 ∨

2(1 + t)

αθ2

)t+1

eλδt−1.

Using Lemma 3 and the trivial inequality kt ≤ ⌈kt⌉ ≤ k(t + 1), we have

E
[
X

(n)
k,⌈kt⌉

]
≤

(
2⌈kt⌉

θ2kα

)⌈kt⌉

(eλ)k
(
k

n

)⌈kt⌉−k

≤ fk

(
k

n

)
.

Since f is increasing, we see that for any 1 ≤ m ≤ δn,

E
[
Z

(n)
δ,t

]
=

⌊δn⌋∑

k=1

E
[
X

(n)
k,⌈kt⌉

]
≤

m−1∑

k=1

fk
(m
n

)
+

⌊δn⌋∑

k=m

fk(δ)

≤
f(m

n
)

1 − f(m
n

)
+

f(δ)m

1 − f(δ)
.

Choose m ∼ c lnn with c fixed. As n → ∞, the first term is of order ( lnn
n

)t−1

while the second is of order f(δ)c lnn << ( lnn
n

)t−1, if c is large enough.

Proof of Theorem 3. The assumptions on {d
n
}n≥1 are more than sufficient

to guarantee that a-s, the local weak limit of {Gn}n≥1 is µ := ugwt(π) (see
e.g [9]). Thus, the weak convergence LGn

→ L holds a-s, where L is the law
of ∂Θ0 under µ. Now, if t < ̺(µ) then L ((t,∞)) > 0, so the Portmanteau
Theorem ensures that lim infn LGn

((t,∞)) > 0 a-s. Consequently,

P (̺(Gn) ≤ t) = P (LGn
((t,∞)) = 0) −−−→

n→∞
0.
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On the other-hand, if t > ̺(µ) then L ([t,∞)) = 0, so the Portmanteau
Theorem gives LGn

((t,∞)) → 0 a-s. Thus, with δ as in Proposition 12,

P (̺(Gn) > t) ≤ P (LGn
([t,∞)) > δ) + P

(
Z

(n)
δ,t > 0

)
−−−→
n→∞

0.

Note that the requirement t > 1 is fulfilled, since ̺(µ) ≥ 1. Indeed, every
node in a tree of size n has load 1 − 1

n
, and the assumption π0 + π1 < 1

guarantees that the size of the random tree T ∼ ugwt(π) is unbounded.
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