15 research outputs found

    Accuracy of density functionals for molecular electronics: the Anderson junction

    Full text link
    The exact ground-state exchange-correlation functional of Kohn-Sham density functional theory yields the exact transmission through an Anderson junction at zero bias and temperature. The exact impurity charge susceptibility is used to construct the exact exchange-correlation potential. We analyze the successes and limitations of various types of approximations, including smooth and discontinuous functionals of the occupation, as well as symmetry-broken approaches.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    The number of transmission channels through a single-molecule junction

    Full text link
    We calculate transmission eigenvalue distributions for Pt-benzene-Pt and Pt-butadiene-Pt junctions using realistic state-of-the-art many-body techniques. An effective field theory of interacting π\pi-electrons is used to include screening and van der Waals interactions with the metal electrodes. We find that the number of dominant transmission channels in a molecular junction is equal to the degeneracy of the molecular orbital closest to the metal Fermi level.Comment: 9 pages, 8 figure

    Giant Thermoelectric Effect from Transmission Supernodes

    Full text link
    We predict an enormous order-dependent quantum enhancement of thermoelectric effects in the vicinity of a higher-order `supernode' in the transmission spectrum of a nanoscale junction. Single-molecule junctions based on 3,3'-biphenyl and polyphenyl ether (PPE) are investigated in detail. The nonequilibrium thermodynamic efficiency and power output of a thermoelectric heat engine based on a 1,3-benzene junction are calculated using many-body theory, and compared to the predictions of the figure-of-merit ZT.Comment: 5 pages, 6 figure

    Heat transport at the nanoscale and ultralow temperatures -- implications for quantum technologies

    No full text
    International audienceIn this perspective, we discuss thermal imbalance and the associated electron-mediated thermal transport in quantum electronic devices at very low temperatures. We first present the theoretical approaches describing heat transport in nanoscale conductors at low temperatures, in which quantum confinement and interactions play an important role. We then discuss the experimental techniques for generating and measuring heat currents and temperature gradients on the nanoscale. Eventually we review the most important quantum effects on heat transport, and discuss implications for quantum technologies and future directions in the field
    corecore