7 research outputs found

    Existence and stability of solutions to the equations of fibre suspension flows

    Get PDF
    Includes bibliographical references.A popular approach to formulating the initial-boundary value problem for fibre suspension flows is that in which fibre orientation is accounted for in an averaged sense, through the introduction of a second-order orientation tensor A. This variable, together with the velocity and pressure, then constitutes the set of unknown variables for the problem. The governing equations are balance of linear momentum, the incompressibility condition, an evolution equation for A, and a constitutive equation for the stress. The evolution equation contains a fourth-order orientation tensor A, and it is necessary to approximate A as a function of A, through a closure relation. The purpose of this these is to examine the well-posedness of the equations governing fibre fibre suspension ïŹ‚ows, for various closure relations. It has previously been shown by GP Galdi and BD Reddy that, for the linear closure, the problem is wellposed provided that the particle number, a material constant, is less than a critical value. The work by Galdi and Reddy made of a model in which rotary diffusivity is a function of the ïŹ‚ow. This thesis re-examines these issues in two different ways. First, the second law of thermodynamics is used to establish the constraints that the constitutive equations have to satisfy in order to be compatible with this law. This investigation is carried out for a variety of closure rules. The second contribution of the thesis concerns the existence and uniqueness of solutions to the governing equations, for the linear and quadratic closures; for a model in which the rotary diffusivity is treated as a constant, local and global existence of solutions are established, for sufficiently small data, and in the case of the linear closure, for admissible values of the particle number. The existence theory uses a Schauder fixed point approach

    Modelling the transmission dynamics of Contagious Bovine Pleuropneumonia in the presence of antibiotic treatment with limited medical supply

    Get PDF
    We present and analyze a mathematical model of the transmission dynamics of Contagious Bovine Pleuropneumonia (CBPP) in the presence of antibiotic treatment with limited medical supply. We use a saturated treatment function to model the effect of delayed treatment. We prove that there exist one disease free equilibrium and at most two endemic equilibrium solutions. A backward bifurcation occurs for small values of delay constant such that two endemic equilibriums exist if Rt ∈ (R∗t,1); where, Rt is the treatment reproduction number and R∗t is a threshold such that the disease dies out if and persists in the population if Rt > R∗t. However, when a backward bifurcation occurs, a disease free system may easily be shifted to an epidemic. The bifurcation turns forward when the delay constant increases; thus, the disease free equilibrium becomes globally asymptotically stable if Rt 1. However, the amount of maximal medical resource required to control the disease increases as the value of the delay constant increases. Thus, antibiotic treatment with limited medical supply setting would not successfully control CBPP unless we avoid any delayed treatment, improve the efficacy and availability of medical resources or it is given along with vaccination

    Mathematical Modelling of the Transmission Dynamics of Contagious Bovine Pleuropneumonia with Vaccination and Antibiotic Treatment

    No full text
    In this paper we present a mathematical model for the transmission dynamics of Contagious Bovine Pleuropneumonia (CBPP) by considering antibiotic treatment and vaccination. The model is comprised of susceptible, vaccinated, exposed, infectious, persistently infected, and recovered compartments. We analyse the model by deriving a formula for the control reproduction number Rc and prove that, for Rc1, the unique endemic equilibrium is globally asymptotically stable and hence the disease persists. Thus, Rc=1 acts as a sharp threshold between the disease dying out or causing an epidemic. As a result, the threshold of antibiotic treatment is αt⁎=0.1049. Thus, without using vaccination, more than 85.45% of the infectious cattle should receive antibiotic treatment or the period of infection should be reduced to less than 8.15 days to control the disease. Similarly, the threshold of vaccination is ρ⁎=0.0084. Therefore, we have to vaccinate at least 80% of susceptible cattle in less than 49.5 days, to control the disease. Using both vaccination and antibiotic treatment, the threshold value of vaccination depends on the rate of antibiotic treatment, αt, and is denoted by ραt. Hence, if 50% of infectious cattle receive antibiotic treatment, then at least 50% of susceptible cattle should get vaccination in less than 73.8 days in order to control the disease

    Applying the chemical-reaction definition of mass action to infectious disease modelling

    No full text
    The law of mass action is used to govern interactions between susceptible and infected individuals in a variety of infectious disease models. However, the commonly used version is a simplification of the version originally used to describe chemical reactions. We reformulate a general disease model using the chemical-reaction definition of mass action incorporating both an altered transmission term and an altered recovery term in the form of positive exponents. We examine the long-term outcome as these exponents vary. For many scenarios, the reproduction number is either 0 or ∞\infty, while it obtains finite values only for certain combinations. We found conditions under which endemic equilibria exist and are unique for a variety of possible exponents. We also determined circumstances under which backward bifurcations are possible or do not occur. The simplified form of mass action may be masking generalised behaviour that may result in practice if these exponents ``fluctuate'' around 1. This may lead to a loss of predictability in some models

    Mathematical Modeling of Echinococcosis in Humans, Dogs, and Sheep

    No full text
    In this paper, a model for the transmission dynamics of cystic echinococcosis in the dog, sheep, and human populations is developed and analyzed. We first model and analyze the predator-prey interaction model in these populations; then, we propose a mathematical model of the transmission dynamics of cystic echinococcosis. We calculate the basic reproduction number R0 and prove that the disease-free equilibrium is globally asymptotically stable, and hence, the disease dies out if R01. Numerical simulations are performed to illustrate our analytic results. We give sensitivity analysis of the key parameters and give strategies that are helpful to control the transmission of cystic echinococcosis, from which the most sensitive parameter is the transmission rate of Echinococcus’ eggs from the environment to sheep (ÎČes). Thus, the effective controlling strategies are associated with this parameter
    corecore