55 research outputs found

    Outcomes of Fusions From the Cervical Spine to the Pelvis.

    Get PDF
    Study designRetrospective cohort study.ObjectiveDetermine the indications, complications, and clinical outcomes in patients requiring fusions from the cervical spine to the pelvis. Several investigators have examined fusions from the thoracic spine to the sacrum, but no similar study has been performed for cervical-to-pelvis fusions.MethodsPatients from 2003 to 2014 with an upper instrumented vertebrae (UIV) in the cervical spine (any level) and a lower instrumented vertebrae (LIV) in the sacrum or pelvis were included in the study. Those with infectious or acute trauma-related deformities were excluded. Patient demographics, medical history, diagnosis, operative procedure, and health-related quality of life measures were analyzed. Student's t test, Kruskal-Wallis test, and χ2 test were used as appropriate; significance was set at P < .05 for all tests.ResultsFifty-five patients met inclusion criteria for the study. Average follow-up was 2.8 years. Proximal junctional kyphosis was the most common indication for cervical-to-pelvis fusions (36%). The most common UIV was C2 (29%) followed by C7 (24%). There was an average 31° correction in maximum kyphosis and a 3.3 cm improvement in sagittal vertical axis. In adults, the rate of complication was 71.4%, with a major complication rate of 39.3% and reoperation rate of 53.6%. There was significant improvement in the Scoliosis Research Society (SRS-22r) score (3.0 to 3.5; P < .01).ConclusionProximal junctional kyphosis is the most common indication for patients requiring fusion to the cervical spine. Adult patients incur a significant risk of major complications and reoperations. However, significant improvement in SRS-22r outcomes are noted in these patients

    The number of transmission channels through a single-molecule junction

    Full text link
    We calculate transmission eigenvalue distributions for Pt-benzene-Pt and Pt-butadiene-Pt junctions using realistic state-of-the-art many-body techniques. An effective field theory of interacting π\pi-electrons is used to include screening and van der Waals interactions with the metal electrodes. We find that the number of dominant transmission channels in a molecular junction is equal to the degeneracy of the molecular orbital closest to the metal Fermi level.Comment: 9 pages, 8 figure

    Evaluation of rate law approximations in bottom-up kinetic models of metabolism.

    Get PDF
    BackgroundThe mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question.ResultsIn this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations.ConclusionsOverall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches

    Protein engineering to increase the potential of a therapeutic antibody Fab for long-acting delivery to the eye

    Get PDF
    To date, ocular antibody therapies for the treatment of retinal diseases rely on injection of the drug into the vitreous chamber of the eye. Given the burden for patients undergoing this procedure, less frequent dosing through the use of long-acting delivery (LAD) technologies is highly desirable. These technologies usually require a highly concentrated formulation and the antibody must be stable against extended exposure to physiological conditions. Here we have increased the potential of a therapeutic antibody antigen-binding fragment (Fab) for LAD by using protein engineering to enhance the chemical and physical stability of the molecule. Structure-guided amino acid substitutions in a negatively charged complementarity determining region (CDR-L1) of an anti-factor D (AFD) Fab resulted in increased chemical stability and solubility. A variant of AFD (AFD.v8), which combines light chain substitutions (VL-D28S:D30E:D31S) with a substitution (VH-D61E) to stabilize a heavy chain isomerization site, retained complement factor D binding and inhibition potency and has properties suitable for LAD. This variant was amenable to high protein concentration (>250 mg/mL), low ionic strength formulation suitable for intravitreal injection. AFD.v8 had acceptable pharmacokinetic (PK) properties upon intravitreal injection in rabbits, and improved stability under both formulation and physiological conditions. Simulations of expected human PK behavior indicated greater exposure with a 25-mg dose enabled by the increased solubility of AFD.v8

    Semantic text mining support for lignocellulose research

    Get PDF
    Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the research and development of biomass-derived products and fuels. One approach to meeting this challenge is to mine the rapidly-expanding repertoire of microbial genomes for enzymes with the appropriate catalytic properties. Semantic technologies, including natural language processing, ontologies, semantic Web services and Web-based collaboration tools, promise to support users in handling complex data, thereby facilitating knowledge-intensive tasks. An ongoing challenge is to select the appropriate technologies and combine them in a coherent system that brings measurable improvements to the users. We present our ongoing development of a semantic infrastructure in support of genomics-based lignocellulose research. Part of this effort is the automated curation of knowledge from information on fungal enzymes that is available in the literature and genome resources. Working closely with fungal biology researchers who manually curate the existing literature, we developed ontological natural language processing pipelines integrated in a Web-based interface to assist them in two main tasks: mining the literature for relevant knowledge, and at the same time providing rich and semantically linked information

    Protein engineering to increase the potential of a therapeutic antibody Fab for long-acting delivery to the eye

    Get PDF
    To date, ocular antibody therapies for the treatment of retinal diseases rely on injection of the drug into the vitreous chamber of the eye. Given the burden for patients undergoing this procedure, less frequent dosing through the use of long-acting delivery (LAD) technologies is highly desirable. These technologies usually require a highly concentrated formulation and the antibody must be stable against extended exposure to physiological conditions. Here we have increased the potential of a therapeutic antibody antigen-binding fragment (Fab) for LAD by using protein engineering to enhance the chemical and physical stability of the molecule. Structure-guided amino acid substitutions in a negatively charged complementarity determining region (CDR-L1) of an anti-factor D (AFD) Fab resulted in increased chemical stability and solubility. A variant of AFD (AFD.v8), which combines light chain substitutions (VL-D28S:D30E:D31S) with a substitution (VH-D61E) to stabilize a heavy chain isomerization site, retained complement factor D binding and inhibition potency and has properties suitable for LAD. This variant was amenable to high protein concentration (>250 mg/mL), low ionic strength formulation suitable for intravitreal injection. AFD.v8 had acceptable pharmacokinetic (PK) properties upon intravitreal injection in rabbits, and improved stability under both formulation and physiological conditions. Simulations of expected human PK behavior indicated greater exposure with a 25-mg dose enabled by the increased solubility of AFD.v8

    A 160-kD Systemin Receptor on the Surface of Lycopersicon peruvianum

    No full text

    Discovery Strategies to Maximize the Clinical Potential of T-Cell Engaging Antibodies for the Treatment of Solid Tumors

    No full text
    T-cell Engaging bispecific antibodies (TcEs) that can re-direct cytotoxic T-cells to kill cancer cells have been validated in clinical studies. To date, the clinical success with these agents has mainly been seen in hematologic tumor indications. However, an increasing number of TcEs are currently being developed to exploit the potent mode-of-action to treat solid tumor indications, which is more challenging in terms of tumor-cell accessibility and the complexity of the tumor microenvironment (TME). Of particular interest is the potential of TcEs as an immunotherapeutic approach for the treatment of non-immunogenic (often referred to as cold) tumors that do not respond to checkpoint inhibitors such as programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) antibodies. This has led to considerable discovery efforts for, firstly, the identification of tumor selective targeting approaches that can safely re-direct cytotoxic T-cells to cancer cells, and, secondly, bispecific antibodies and their derivatives with drug-like properties that promote a potent cytolytic synapse between T-cells and tumor cells, and in the most advanced TcEs, have IgG-like pharmacokinetics for dosing convenience. Based on encouraging pre-clinical data, a growing number of TcEs against a broad range of targets, and using an array of different molecular structures have entered clinical studies for solid tumor indications, and the first clinical data is beginning to emerge. This review outlines the different approaches that have been taken to date in addressing the challenges of exploiting the TcE mode-of-action for a broad range of solid indications, as well as opportunities for future discovery potential
    • …
    corecore