499 research outputs found

    Commentary: Use of BACTRAC Proteomic Database-Uromodulin Protein Expression during Ischemic Stroke

    Get PDF
    Introduction: Uromodulin (UMOD) is a glycoprotein expressed by the epithelial cells of the thick ascending limb of Henle\u27s loop in the kidney. Research has shown that increased uromodulin expression may be associated with lower risk of cardiovascular disease in adults. Utilizing the Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) (clinicaltrials.gov NCT03153683), a continuously enrolling tissue bank, we aimed to examine the associations between serum uromodulin, age, and high BMI (BMI\u3e 25) and its relationship to stroke in patients. Methods: Arterial blood distal and proximal to the thrombus was collected during a thrombectomy procedure using the BACTRAC protocol and sent to Olink (Boston, MA) to determine proteomic expression via proximity extension assay. Uromodulin expression was recorded and analyzed using two tailed T-tests and linear regressions. Results: The relationship between systemic and intracranial uromodulin, age, high BMI and hypertension were assessed. Systemic and intracranial uromodulin decreased with age (p\u3c 0.0001 and r²= 0.343, p= 0.0416 and r²= 0.102) respectively. Systemic uromodulin expression increased with BMI\u3e 25 (p= 0.014). Presence of hypertension decreased uromodulin’s expression systemically (p= 0.018) and intracranially (p= 0.007). Conclusions: Uromodulin was increased significantly in overweight patients, decreased significantly in older patients, and decreased in patients with hypertension. The increase in uromodulin in people with high BMI could be a protective reaction of the kidney to worsening conditions that make ischemic stroke more likely, with a goal of delaying dangerous outcomes. The decreased expression of uromodulin in older adults could be associated with the decline of general kidney function that accompanies aging. Hypertension can contribute to an AKI by decreasing perfusion to the kidney, therefore decreasing kidney function and uromodulin production. Further analyses are needed to understand the role of uromodulin following ischemic stroke

    The Renormalization Group and Singular Perturbations: Multiple-Scales, Boundary Layers and Reductive Perturbation Theory

    Full text link
    Perturbative renormalization group theory is developed as a unified tool for global asymptotic analysis. With numerous examples, we illustrate its application to ordinary differential equation problems involving multiple scales, boundary layers with technically difficult asymptotic matching, and WKB analysis. In contrast to conventional methods, the renormalization group approach requires neither {\it ad hoc\/} assumptions about the structure of perturbation series nor the use of asymptotic matching. Our renormalization group approach provides approximate solutions which are practically superior to those obtained conventionally, although the latter can be reproduced, if desired, by appropriate expansion of the renormalization group approximant. We show that the renormalization group equation may be interpreted as an amplitude equation, and from this point of view develop reductive perturbation theory for partial differential equations describing spatially-extended systems near bifurcation points, deriving both amplitude equations and the center manifold.Comment: 44 pages, 2 Postscript figures, macro \uiucmac.tex available at macro archives or at ftp://gijoe.mrl.uiuc.edu/pu

    Transcription control by the ENL YEATS domain in acute leukaemia

    Get PDF
    Recurrent chromosomal translocations producing a chimaeric MLL oncogene give rise to a highly aggressive acute leukaemia associated with poor clinical outcome. The preferential involvement of chromatin-associated factors as MLL fusion partners belies a dependency on transcription control. Despite recent progress made in targeting chromatin regulators in cancer, available therapies for this well-characterized disease remain inadequate, prompting the need to identify new targets for therapeutic intervention. Here, using unbiased CRISPR-Cas9 technology to perform a genome-scale loss-of-function screen in an MLL-AF4-positive acute leukaemia cell line, we identify ENL as an unrecognized gene that is specifically required for proliferation in vitro and in vivo. To explain the mechanistic role of ENL in leukaemia pathogenesis and dynamic transcription control, a chemical genetic strategy was developed to achieve targeted protein degradation. Acute loss of ENL suppressed the initiation and elongation of RNA polymerase II at active genes genome-wide, with pronounced effects at genes featuring a disproportionate ENL load. Notably, an intact YEATS chromatin-reader domain was essential for ENL-dependent leukaemic growth. Overall, these findings identify a dependency factor in acute leukaemia and suggest a mechanistic rationale for disrupting the YEATS domain in disease.K. LubinE. Wood

    Thermal Renormalization Group-Equations and the Phase-Transition of Scalar O(N)-Theories

    Get PDF
    We discuss the formulation of "thermal renormalization group-equations" and their application to the finite temperature phase-transition of scalar O(N)-theories. Thermal renormalization group-equations allow for a computation of both the universal and the non-universal aspects of the critical behavior directly in terms of the zero-temperature physical couplings. They provide a nonperturbative method for a computation of quantities like real-time correlation functions in a thermal environment, where in many situations straightforward perturbation theory fails due to the bad infrared-behavior of the thermal fluctuations. We present results for the critical temperature, critical exponents and amplitudes as well as the scaling equation of state for self-interacting scalar theories.Comment: 32 pages with 10 figures and 4 tables included, latex2

    Enhancement of crystallization with nucleotide ligands identified by dye-ligand affinity chromatography

    Get PDF
    Ligands interacting with Mycobacterium tuberculosis recombinant proteins were identified through use of the ability of Cibacron Blue F3GA dye to interact with nucleoside/nucleotide binding proteins, and the effects of these ligands on crystallization were examined. Co-crystallization with ligands enhanced crystallization and enabled X-ray diffraction data to be collected to a resolution of at least 2.7 Å for 5 of 10 proteins tested. Additionally, clues about individual proteins’ functions were obtained from their interactions with each of a panel of ligands

    NLRP12 Suppresses Colon Inflammation and Tumorigenesis through the Negative Regulation of Noncanonical NF-κB Signaling

    Get PDF
    In vitro data suggest that a subgroup of NLR proteins, including NLRP12, inhibits the transcription factor NF-κB, although physiologic and disease-relevant evidence is largely missing. Dysregulated NF-κB activity is associated with colonic inflammation and cancer, and we found Nlrp12(-/-) mice were highly susceptible to colitis and colitis-associated colon cancer. Polyps isolated from Nlrp12(-/-) mice showed elevated noncanonical NF-κB activation and increased expression of target genes that were associated with cancer, including Cxcl13 and Cxcl12. NLRP12 negatively regulated ERK and AKT signaling pathways in affected tumor tissues. Both hematopoietic- and nonhematopoietic-derived NLRP12 contributed to inflammation, but the latter dominantly contributed to tumorigenesis. The noncanonical NF-κB pathway was regulated upon degradation of TRAF3 and activation of NIK. NLRP12 interacted with both NIK and TRAF3, and Nlrp12(-/-) cells have constitutively elevated NIK, p100 processing to p52 and reduced TRAF3. Thus, NLRP12 is a checkpoint of noncanonical NF-κB, inflammation, and tumorigenesis

    Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance

    Analysis of nucleoside-binding proteins by ligand-specific elution from dye resin: application to Mycobacterium tuberculosis aldehyde dehydrogenases

    Get PDF
    We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were previously shown to be specifically eluted from a Cibacron Blue F3GA dye resin with nucleosides. In this study we characterized the nucleoside-binding specificity of one of these ALDH isozymes (recombinant Mtb Rv0223c) and compared these biochemical results with co-crystallization experiments with different Rv0223c-nucleoside pairings. We found that the strongly interacting ligands (NAD and NADH) aided formation of high-quality crystals, permitting solution of the first Mtb ALDH (Rv0223c) structure. Other nucleoside ligands (AMP, FAD, adenosine, GTP and NADP) exhibited weaker binding to Rv0223c, and produced co-crystals diffracting to lower resolution. Difference electron density maps based on crystals of Rv0223c with various nucleoside ligands show most share the binding site where the natural ligand NAD binds. From the high degree of similarity of sequence and structure compared to human mitochondrial ALDH-2 (BLAST Z-score = 53.5 and RMSD = 1.5 Å), Rv0223c appears to belong to the ALDH-2 class. An altered oligomerization domain in the Rv0223c structure seems to keep this protein as monomer whereas native human ALDH-2 is a multimer

    Lead optimization of a pyrazole sulfonamide series of trypanosoma brucei N -myristoyltransferase inhibitors:Identification and evaluation of CNS penetrant compounds as potential treatments for stage 2 human african trypanosomiasis

    Get PDF
    [Image: see text] Trypanosoma bruceiN-myristoyltransferase (TbNMT) is an attractive therapeutic target for the treatment of human African trypanosomiasis (HAT). From previous studies, we identified pyrazole sulfonamide, DDD85646 (1), a potent inhibitor of TbNMT. Although this compound represents an excellent lead, poor central nervous system (CNS) exposure restricts its use to the hemolymphatic form (stage 1) of the disease. With a clear clinical need for new drug treatments for HAT that address both the hemolymphatic and CNS stages of the disease, a chemistry campaign was initiated to address the shortfalls of this series. This paper describes modifications to the pyrazole sulfonamides which markedly improved blood–brain barrier permeability, achieved by reducing polar surface area and capping the sulfonamide. Moreover, replacing the core aromatic with a flexible linker significantly improved selectivity. This led to the discovery of DDD100097 (40) which demonstrated partial efficacy in a stage 2 (CNS) mouse model of HAT
    corecore