7 research outputs found

    Buoyant Effects on the Flammability of Silicone Samples Planned for the Spacecraft Fire Experiment (Saffire)

    Get PDF
    Flammability experiments on silicone samples were conducted in anticipation of the Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame spread using Test 1 procedures, downward opposed-flow flame spread, horizontal and angled flame spread, and forced-flow upward and downward flame spread. In addition to these configurations, upward and downward tests were conducted in a chamber with varying oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not burn the entire sample. As thickness was increased, the flame spread distance decreased before flame extinguishment. For the thickest sample, ignition could not be achieved. In the downward tests, the two thinnest samples permitted the flame to burn the entire sample, but the spread rate was lower compared to the corresponding upward values. The other two thicknesses could not be ignited in the downward configuration. The increased flammability for downward spreading flames relative to upward ones is uncommon. The two thinnest samples also burned completely in the horizontal configuration, as well as at angles up to 75 degrees from the horizontal. Upward tests in air with an added forced flow were more flammable. The upward and downward flammability behavior was compared in atmospheres of varying oxygen concentration to determine a maximum oxygen concentration for each configuration. Complementary analyses using EDS, TGA, and SEM techniques suggest the importance of the silica layer deposited downstream onto the unburned sample surface

    Prevention of Over-Pressurization During Combustion in a Sealed Chamber

    Get PDF
    The combustion of flammable material in a sealed chamber invariably leads to an initial pressure rise in the volume. The pressure rise is due to the increase in the total number of gaseous moles (condensed fuel plus chamber oxygen combining to form gaseous carbon dioxide and water vapor) and, most importantly, the temperature rise of the gas in the chamber. Though the rise in temperature and pressure would reduce with time after flame extinguishment due to the absorption of heat by the walls and contents of the sealed spacecraft, the initial pressure rise from a fire, if large enough, could lead to a vehicle over-pressure and the release of gas through the pressure relief valve. This paper presents a simple lumped-parameter model of the pressure rise in a sealed chamber resulting from the heat release during combustion. The transient model considers the increase in gaseous moles due to combustion, and heat transfer to the chamber walls by convection and radiation and to the fuel-sample holder by conduction, as a function of the burning rate of the material. The results of the model are compared to the pressure rise in an experimental chamber during flame spread tests as well as to the pressure falloff after flame extinguishment. The experiments involve flame spread over thin solid fuel samples. Estimates of the heat release rate profiles for input to the model come from the assumed stoichiometric burning of the fuel along with the observed flame spread behavior. The sensitivity of the model to predict maximum chamber pressure is determined with respect to the uncertainties in input parameters. Model predictions are also presented for the pressure profile anticipated in the Fire Safety-1 experiment, a material flammability and fire safety experiment proposed for the European Space Agency (ESA) Automated Transfer Vehicle (ATV). Computations are done for a range of scenarios including various initial pressures and sample sizes. Based on these results, various mitigation approaches are suggested to prevent vehicle over-pressurization and help guide the definition of the space experiment

    Information Avoidance

    No full text

    Safety and Adverse Events after Targeted Lung Denervation for Symptomatic Moderate to Severe Chronic Obstructive Pulmonary Disease (AIRFLOW). A Multicenter Randomized Controlled Clinical Trial

    No full text
    corecore