2,961 research outputs found

    Clade-wide variation in bite-force performance is determined primarily by size, not ecology

    Get PDF
    Performance traits are tightly linked to the fitness of organisms. However, because studies of variation in performance traits generally focus on just one or several closely related species, we are unable to draw broader conclusions about how and why these traits vary across clades. One important performance trait related to many aspects of an animal's life history is bite-force. Here, we use a clade-wide phylogenetic comparative approach to investigate relationships between size, head dimensions and bite-force among lizards and tuatara (lepidosaurs), using the largest bite-force dataset collated to date for any taxonomic group. We test four predictions: that bite-force will be greater in larger species, and for a given body size, bite-force will be greatest in species with acrodont tooth attachment, herbivorous diets, and non-burrowing habits. We show that bite-force is strongly related to body and head size across lepidosaurs and, as predicted, larger species have the greatest bite-forces. Contrary to our other predictions, tooth attachment, diet and habit have little predictive power when accounting for size. Herbivores bite more forcefully simply because they are larger. Our results also highlight priorities for future sampling to further enhance our understanding of broader evolutionary patterns

    GPI-anchored uPAR requires Endo180 for rapid directional sensing during chemotaxis

    Get PDF
    Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) play an important role in cell guidance and chemotaxis during normal and pathological events. uPAR is GPI-anchored and the mechanism by which it transmits intracellular polarity cues across the plasma membrane during directional sensing has not been elucidated. The constitutively recycling endocytic receptor Endo180 forms a trimolecular complex with uPAR in the presence of uPA, hence its alternate name uPAR-associated protein. Here, we demonstrate that Endo180 is a general promoter of random cell migration and has a more specific function in cell chemotaxis up a uPA gradient. Endo180 expression was demonstrated to enhance uPA-mediated filopodia production and promote rapid activation of Cdc42 and Rac. Expression of a noninternalizing Endo180 mutant revealed that promotion of random cell migration requires receptor endocytosis, whereas the chemotactic response to uPA does not. From these studies, we conclude that Endo180 is a crucial link between uPA–uPAR and setting of the internal cellular compass

    The Impact of Active Learning in a Speech-Language Pathology Swallowing and Dysphagia Course

    Get PDF
    The signature pedagogy in Speech-Language Pathology (SLP) higher education programs has been criticized for its instructor-centric lecture format and emphasis on the lower tiers of Bloom’s taxonomy (simply memorizing knowledge) at the expense of helping students develop the clinical problem-solving skills required for a lifetime of practice and learning. The purpose of this study was to examine the responses of a cohort of graduate speech-language pathology students to an active learning-oriented swallowing and dysphagia course design. A potential relationship between student perceptions of the active learning pedagogy and academic performance was also explored. The results suggest that active learning positively impacted both student perceptions and performance in the redesigned swallowing and dysphagia course

    Method for the Destruction of Endotoxin in Synthetic Spider Silk Proteins

    Get PDF
    Although synthetic spider silk has impressive potential as a biomaterial, endotoxin contamination of the spider silk proteins is a concern, regardless of the production method. The purpose of this research was to establish a standardized method to either remove or destroy the endotoxins present in synthetic spider silk proteins, such that the endotoxin level was consistently equal to or less than 0.25 EU/mL, the FDA limit for similar implant materials. Although dry heat is generally the preferred method for endotoxin destruction, heating the silk proteins to the necessary temperatures led to compromised mechanical properties in the resultant materials. In light of this, other endotoxin destruction methods were investigated, including caustic rinses and autoclaving. It was found that autoclaving synthetic spider silk protein dopes three times in a row consistently decreased the endotoxin level 10–20 fold, achieving levels at or below the desired level of 0.25 EU/mL. Products made from triple autoclaved silk dopes maintained mechanical properties comparable to products from untreated dopes while still maintaining low endotoxin levels. Triple autoclaving is an effective and scalable method for preparing synthetic spider silk proteins with endotoxin levels sufficiently low for use as biomaterials without compromising the mechanical properties of the materials

    The C-Band All-Sky Survey: Instrument design, status, and first-look data

    Get PDF
    The C-Band All-Sky Survey (C-BASS) aims to produce sensitive, all-sky maps of diffuse Galactic emission at 5 GHz in total intensity and linear polarization. These maps will be used (with other surveys) to separate the several astrophysical components contributing to microwave emission, and in particular will allow an accurate map of synchrotron emission to be produced for the subtraction of foregrounds from measurements of the polarized Cosmic Microwave Background. We describe the design of the analog instrument, the optics of our 6.1 m dish at the Owens Valley Radio Observatory, the status of observations, and first-look data.Comment: 10 pages, 11 figures, published in Proceedings of SPIE MIllimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010), Vol. 7741, 77411I-1 - 77411I-1

    Two-parametric PT-symmetric quartic family

    Full text link
    We describe a parametrization of the real spectral locus of the two-parametric family of PT-symmetric quartic oscillators. For this family, we find a parameter region where all eigenvalues are real, extending the results of Dorey, Dunning, Tateo and Shin.Comment: 23 pages, 15 figure

    Influence of long-range correlated surface and near the surface disorder on the process of adsorption of long-flexible polymer chains

    Full text link
    The influence of long-range correlated surface and decaying near surface disorder with quenched defects is studied. We consider a correlation function for the defects of the form ez/ξra\frac{e^{-z/\xi}}{r^{a}}, where a<d1a<d-1 and zz being the coordinate in the direction perpendicular to the surface and rr denotes the distance parallel to the surface. We investigate the process of adsorption of long-flexible polymer chains with excluded volume interactions on a "marginal" and attractive wall in the framework of renormalization group field theoretical approach up to first order of perturbation theory in a double (ϵ\epsilon,δ\delta)- expansion (ϵ=4d\epsilon=4-d, δ=3a\delta=3-a) for the semi-infinite ϕ4|\phi|^4 O(m,n)O(m,n) model with the above mentioned type of surface and near the surface disorder in the limit m,n0m,n\to 0. In particular we study two limiting cases. First, we investigate the scenario where the chain's extension it much larger then ξ\xi. Second, we consider the case where the chain's extension is of the order of ξ\xi. For both cases we obtained series for bulk and the whole set of surface critical exponents, characterizing the process of adsorption of long-flexible polymer chains at the surface. The polymer linear dimensions parallel and perpendicular to the surface and the corresponding partition functions as well as the behavior of monomer density profiles and the fraction of adsorbed monomers at the surface and in the volume are studied.Comment: 31 pages, 5 figures, 2 table

    Entangled Polymer Rings in 2D and Confinement

    Full text link
    The statistical mechanics of polymer loops entangled in the two-dimensional array of randomly distributed obstacles of infinite length is discussed. The area of the loop projected to the plane perpendicular to the obstacles is used as a collective variable in order to re-express a (mean field) effective theory for the polymer conformation. It is explicitly shown that the loop undergoes a collapse transition to a randomly branched polymer with RlN14R\propto lN^\frac{1}{4}.Comment: 17 pages of Latex, 1 ps figure now available upon request, accepted for J.Phys.A:Math.Ge
    corecore