5,533 research outputs found

    Shoreland Buffer Module for GRANIT Data Mapper

    Get PDF
    The Complex Systems Research Center at the University of New Hampshire enhanced the GRANIT Data Mapper (http://mapper.granit.unh.edu) by incorporating data describing shoreline buffers in New Hampshire. The project supports an ongoing, comprehensive New Hampshire Estuaries Project (NHEP) outreach initiative that seeks to educate municipal decision-makers about the importance of stream buffers in preserving water quality in coastal New Hampshire. It complements these existing outreach efforts by allowing coastal managers, local land use boards, and the general public to readily visualize the spatial extent of current and/or proposed shoreline regulations in their community. The primary data source for the analysis was the high-resolution New Hampshire National Hydrography Dataset (NHHD). Using standard GIS tools, six concentric buffers incrementing in 50’ widths from 50’ to 300’ were generated around stream and shoreline features recorded in the NHHD. To provide the greatest flexibility to users, two data sets were generated at each buffer increment – one representing shorelines and streams classified as either perennial or intermittent, and the second comprising shorelines and only streams classified as perennial. The resulting buffers were merged with the GRANIT surface water data, and acreage by town and subwatershed was calculated for each buffer category. The shoreline buffer data sets were added to the water resources theme of the Data Mapper, thereby providing the public with the ability to view buffers of varying widths in the context of other data layers (including aerial imagery) available through the viewing tool. The associated acreage data tables were added to the water resources theme tool tab. Findings indicated that aggregated at the HUC-12 level, almost 24,000 acres within the Coastal Basin were covered by 50’ buffers when perennial and intermittent streams as well as shorelines were buffered, with over 133,000 acres covered by 300’ buffers. When only perennial streams and shorelines were considered eligible for buffering, the totals declined to just under 17,000 acres (50’ buffers) and over 96,000 acres (300’ buffers)

    Impervious Surface Mapping in Coastal New Hampshire (2005)

    Get PDF
    Estimates of impervious surface acreage in 2005 were generated and compared to prior estimates for 1990 and 2000 for a 48-town region in coastal New Hampshire, including the 42 towns within Zones A and B of the New Hampshire Estuaries Project (NHEP) area. The estimates were based on applying both traditional and subpixel image classification techniques to 30-meter Landsat 5 Thematic Mapper (TM) satellite data, acquired 3 October 2005. The classifications indicated that impervious surface acreage increased from 4.3% (31,233 acres) in 1990, to 6.3% (45,445 acres) in 2000, to 7.4% (53,408 acres) in 2005. At the subwatershed level, the Portsmouth Harbor subwatershed recorded the highest percentage of impervious surface acreage in 1990 with 19.8% coverage (2,310 acres) and in 2000 with 25.5% coverage (2,975 acres), and this finding continued in 2005 with 28.9% (3,364 acres) of the watershed mapped as impervious. An accuracy assessment was applied to the regional data, and indicated an accuracy of 98.3% for the 2005 data, which compared favorably with the assessment of the 1990 effort (98.6% correct) as well as the 2000 data (93.1% correct). These figures reflect the overall presence/absence of impervious surfaces within the randomly selected pixels. The accuracy was further evaluated against April, 2003 Emerge 1-ft. resolution aerial photography to estimate the validity of the predicted range of imperviousness for a second set of randomly selected pixels. This assessment proved disappointing, as only 7% of the pixels sampled predicted the correct impervious percentage range. The data set representing impervious surface acreage in 2005 has been archived in the GRANIT GIS clearinghouse, thereby making it available to the coastal resource community as well as the general public. The data are appropriate for watershed and subwatershed level characterizations. Users are discouraged from accessing these data to support larger scale mapping and applications

    Developing Impervious Surface Estimates for Coastal New Hampshire

    Get PDF
    Future population growth and the corresponding increase in development in the coastal zone of NH are widely recognized as major threats to the integrity of coastal systems and their watersheds. The potential impacts associated with the expansion of developed land, and specifically with increasing amounts of impervious surfaces – rooftops, sidewalks, roads, and parking lots - may include significant changes in water quantity, degradation in water quality, and habitat loss. Because asphalt, concrete, stone, and other impenetrable materials effectively seal the ground surface, water is repelled and is prevented from infiltrating soils. Instead, stormwater runoff flows directly into our surface waters, depositing metals, excess nutrients, organics, and other pollutants into the receiving bodies. In addition to these environmental impacts, increasing levels of imperviousness can dramatically alter our landscapes, as forested and other natural settings are converted to urban/suburban uses. Many of the impacts associated with impervious surfaces had been well documented by studies in other areas of the country. However, comprehensive studies in coastal New Hampshire had not been undertaken. The primary goals of this project were to provide an accurate, current description of the extent of impervious surface coverage in this region, as well as an estimate of change in the amount of “imperviousness” over a recent, ten-year period

    Developing 1990, 2000, and 2005 Impervious Surface Estimates for Southern York County, Maine

    Get PDF
    Estimates of impervious surface acreage in 1990, 2000, and 2005 were generated for an 11-town region in York County, Maine, covered by the Piscataqua Region Estuaries Partnership (PREP). The project extended previous work done in New Hampshire, relying on comparable satellite-based data sources and image processing methodologies. As a result, standardized impervious surface estimates are now available for the entirety of the PREP region. The impervious surface estimates were derived by applying both traditional and subpixel classification techniques to 30-meter Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite image data. The classifications indicated that 3.3% (9,098 acres) of the study area was impervious in 1990, with increases to 5.3 % (14,646 acres) in 2000 and 6.3% (17,394 acres) in 2005. At the subwatershed level, the Portsmouth Harbor subwatershed recorded the highest percentage of impervious surface acreage in 1990, 2000, and 2005 with 7.8% coverage (1,283 acres), 12.3% coverage (2,009 acres), and 14.5% coverage (2,380 acres) respectively. The regional accuracy assessment indicated an overall accuracy of 97.0% for the 1990 data, 93.0% for the 2000 data, and 92.0% for the 2005 data. These results reflect the overall presence/absence of impervious surfaces within the randomly selected assessment pixels. The three data sets have been archived in the GRANIT GIS clearinghouse, thereby making them available to the coastal resource community as well as the general public. The data are appropriate for watershed and subwatershed level characterizations. Users are discouraged from accessing them to support larger scale mapping and applications

    Designing and Implementing a Backup and Recovery System for Kentucky\u27s Cooperative Extension Service

    Get PDF
    This project proposes the development and proof of concept implementation of a comprehensive backup and recovery plan for Kentucky\u27s Cooperative Extension Service. Currently, no standardized backup system is in place. Each CES office location contains between five and forty Windows based workstations and at least one server, and backup methods vary from office to office. Current backup processes are inadequate in several key areas. To ensure the availability and integrity of mission critical data, the goal of this project is the analysis, design, and implementation of a standardized backup and recovery plan. The project will consider multiple hardware and software solutions (both commercial and open source), along with best practices for implementation and maintenance. A select number of offices will be chosen for implementation, and the project will be considered complete when a successful proof of concept has been established in these locations. A consistent, reliable backup solution, with both onsite and offsite components, will provide a much needed safeguard to enterprise information and protect against costly data loss

    Effects of Foreign Direct Investment Inflows into Agriculture on Food Security in Ghana

    Get PDF
    This study investigated the effects of FDI on food security in a developing country, Ghana. A double logarithm functional form was employed. Daily energy consumption (hunger) was negatively related to agricultural FDI and significant in both the short run and long run. Likewise, daily protein consumption (nutrition) was negatively related to agricultural FDI and statistically significant in the short run and long run. This outcome established a detrimental effect of agricultural FDI inflow on food security in Ghana. Efforts at growing Ghana's economy and increased national income relative to population growth may not promote food security unless government directs final expenditure towards food security programmes specifically. Though further improvement in FDI inflow to agriculture should not be ignored for the sake of its positive benefits, specific interventions are required to ensure that smallholders are not side-lined in production. Government must support appropriate lower priced technologies that smallholders can adopt. Keywords: Food security, Daily energy consumption, Daily protein consumption, Agricultural FDI, agricultural economic growth, government final expenditure, democracy, Ghana

    Technical Efficiency in Agriculture in Ghana-Analyses of Determining Factors

    Get PDF
    The paper sought to estimate technical efficiency in Ghana’s agricultural sector and more importantly, investigate the factors that influence the estimated technical efficiencies. Using data from 1976-2007, the results showed a decreasing returns to scale in Ghana‘s agriculture. Land is negatively inelastic showing over use of the factor. Technology variables, fertiliser and tractor and combines are positively related to output. Whilst fertiliser is elastic, tractor and combines is inelastic. The level of inefficiency is 21% with decreasing returns to scale. The SFA specification is the appropriate model, indeed, superior to OLS. None of the hypothesised variables to explain technical efficiency were statistically distinguishable from zero. The negative sign for land requires decrease in the use of land relative to other inputs. This calls for increase in the use of other variables. The insignificance of the TE effect variables suggest that these variables may be inappropriate in explaining TE in the case of Ghana. Other variables may have to be explored. Keywords: technical efficiency, agriculture, Ghana, determinant

    Cold climate water/wastewater transportation and treatment - a bibliography: completion report

    Get PDF
    This bibliography contains 1,400 citations, including published and unpublished papers, on cold-climate water and wastewater transportation and treatment systems. Sources listed include state and federal agency files which contain information on systems in Alaskan communities and the Alyeska Pipeline Service Company camps. References to systems in other northern countries are also included. The objectives of this study were to identify causes of the failure of Alaskan water and wastewater treatment and transportation facilities and to seek methods for design improvements. Originally, the investigators contemplated an evaluation of systems performance in remote areas in relation to the original conception, planning, design, and construction. Because of the tremendous amount of literature examined, the evaluation was undertaken in a subsequent study, "Alaska Wastewater Treatment Technology" (A-058-ALAS) by Dr. Ronald A. Johnson.OWRT AGREEMENT NO. 14-31-0001-5002 PROJECT NO. A-047-ALAS The work upon which this completion report is based was supported by funds provided by the U. S. Department of the Interior, Office of Water Research and Technology, as authorized under the Water Resources Research Act of 1964, Public Law 88-379, as amended
    corecore