3,445 research outputs found

    Heating and Turbulence Driving by Galaxy Motions in Galaxy Clusters

    Full text link
    Using three-dimensional hydrodynamic simulations, we investigate heating and turbulence driving in an intracluster medium (ICM) by orbital motions of galaxies in a galaxy cluster. We consider Ng member galaxies on isothermal and isotropic orbits through an ICM typical of rich clusters. An introduction of the galaxies immediately produces gravitational wakes, providing perturbations that can potentially grow via resonant interaction with the background gas. When Ng^{1/2}Mg_11 < 100, where Mg_11 is each galaxy mass in units of 10^{11} Msun, the perturbations are in the linear regime and the resonant excitation of gravity waves is efficient to generate kinetic energy in the ICM, resulting in the velocity dispersion sigma_v ~ 2.2 Ng^{1/2}Mg_11 km/s. When Ng^{1/2}Mg_11 > 100, on the other hand, nonlinear fluctuations of the background ICM destroy galaxy wakes and thus render resonant excitation weak or absent. In this case, the kinetic energy saturates at the level corresponding to sigma_v ~ 220 km/s. The angle-averaged velocity power spectra of turbulence driven in our models have slopes in the range of -3.7 to -4.3. With the nonlinear saturation of resonant excitation, none of the cooling models considered are able to halt cooling catastrophe, suggesting that the galaxy motions alone are unlikely to solve the cooling flow problem.Comment: 12 pages including 3 figures, To appear in ApJ

    Visibility graphs and symbolic dynamics

    Get PDF
    Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology non-trivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the system. Via Pesin identity, this in turn suggests that these block entropies are converging to the Kolmogorov- Sinai entropy of the map, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x), x \in[0,1] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs

    Characterizing the radial oxygen abundance distribution in disk galaxies

    Full text link
    We examine the possible dependence of the radial oxygen abundance distribution on non-axisymmetrical structures (bar/spirals) and other macroscopic parameters such as the mass, the optical radius R25, the color g-r, and the surface brightness of the galaxy. A sample of disk galaxies from the CALIFA DR3 is considered. We adopted the Fourier amplitude A2 of the surface brightness as a quantitative characteristic of the strength of non-axisymmetric structures in a galactic disk, in addition to the commonly used morphologic division for A, AB, and B types based on the Hubble classification. To distinguish changes in local oxygen abundance caused by the non-axisymmetrical structures, the multiparametric mass--metallicity relation was constructed as a function of parameters such as the bar/spiral pattern strength, the disk size, color index g-r in the SDSS bands, and central surface brightness of the disk. The gas-phase oxygen abundance gradient is determined by using the R calibration. We find that there is no significant impact of the non-axisymmetric structures such as a bar and/or spiral patterns on the local oxygen abundance and radial oxygen abundance gradient of disk galaxies. Galaxies with higher mass, however, exhibit flatter oxygen abundance gradients in units of dex/kpc, but this effect is significantly less prominent for the oxygen abundance gradients in units of dex/R25 and almost disappears when the inner parts are avoided. We show that the oxygen abundance in the central part of the galaxy depends neither on the optical radius R25 nor on the color g-r or the surface brightness of the galaxy. Instead, outside the central part of the galaxy, the oxygen abundance increases with g-r value and central surface brightness of the disk.Comment: 11 pages, 6 figures; accepted for publication in A&

    Vaccination strategies for small worlds

    Get PDF

    An Improved Method of Computing Multistate Survivorship Proportions for the Terminal Age Groups

    Get PDF
    The aging of populations is a phenomenon which has become an important research topic. Demographers, however, have given inadequate attention to the projection of the number of old people and their future age composition. This paper shows that the conventional method for estimating the survivorship proportions of the very old tends to produce misleading results with respect to the size and composition of the aged. Several alternatives are suggested here to overcome these problems. An empirical example is used to point out the problems of the conventional approach and to evaluate the suggested improvements

    Double pendulum balanced by counter-rotary counter-masses as useful element for synthesis of dynamically balanced mechanisms

    Get PDF
    Complete dynamic balancing principles still cannot avoid a substantial increase of mass and inertia. In addition, the conditions for dynamic balance and the inertia equations can be complicated to derive. This article shows how a double pendulum can be fully dynamically balanced by using counter-rotary counter-masses (CRCMs) for reduced additional mass and inertia. New CRCM-configurations were derived that have a low inertia, a single CRCM or have all CRCMs near the base. This article also shows how a CRCM-balanced double pendulum can be used as building element in the synthesis of balanced mechanisms for which the balancing conditions and inertia equations can be written down quickly. For constrained mechanisms the procedure is to first write down the known balancing conditions and inertia equations for the balanced double pendula and subsequently substitute the kinematic relations

    The Isomorphism Relation Between Tree-Automatic Structures

    Get PDF
    An ω\omega-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω\omega-tree-automatic structures. We prove first that the isomorphism relation for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is neither a Σ21\Sigma_2^1-set nor a Π21\Pi_2^1-set
    corecore