16 research outputs found

    Effect of biochar on soil structure – review

    Get PDF
    Received: 2018-02-08    |    Accepted: 2018-02-21    |    Available online: 2018-03-31https://doi.org/10.15414/afz.2018.21.01.11-19Soil structure and organic matter are important indicators of soil quality. In the literature it states that there is a linear relation between soil structure and the organic matter. Mechanisms of formation and stabilization of aggregates have also been described in the literature, but it is evident that not every mechanism is applicable to various soil-climatic conditions. Recently, the modern but not the new term has become a biochar. It is anticipated that biochar is a significant source of C, and its application to the soil will improve the aggregation process in the soil. Lately we have been working in this area and we wanted to provide an overview of this issue through this review. The aim of this review was to collate and synthesize available information on soil structure and SOM. The emphasis of this review is on biochar and its combination with other organic and mineral fertilizers in relation to soil structure.Keywords: biochar, soil organic matter, aggregation, aggregate stabilityReferencesABEL, S. et al. (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. In Geoderma., vol. 202–203, pp. 183–191. DOI: https://doi. org/10.1016/j.geoderma.2013.03.003 ABROL, V. et al. (2016) Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. In Journal of Soil and Sediments, vol. 16, pp. 2709– 2719. DOI: https://doi.org/10.1007/s11368-016-1448-8 AGEGNEHU, G. et al. (2016) Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emission in a tropical agricultural soil. In Science on The Total Environment, vol. 543, pp. 295–306. DOI: https://doi. org/10.1016/j.scitoenv.2015.11.054 AHMAD, M. et al. (2014) Biochar as a sorbent for contaminant management in soil and water: A review. In Chemosphere, vol. 99, pp. 19–33. DOI: https://doi.org/j.chemosphere.2013.10.071AJAYI, A. E. and HORN, R. (2016) Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. In Soil and Tillage Research, vol. 164, pp. 34–44. DOI: https://doi. org/10.1016/j.still.2016.01.011 ANNABI, M et al. (2007) Soil aggregate stability improvement with urban compost of different maturities. In American Society of Agronomy, vol. 71, pp. 413–423. DOI: https://doi.org/10.2136/ sssaj2006.0161 ASAI, H. et al. (2009) Biochar amendment techniques for umpand rice production in Northern Leos: 1. Soil physical properties, leaf SPAD and grain yield. In Field Crop Research, vol. 111., pp. 81–84. DOI: https://doi.org/10.1016/j.for.2008.10.008 BALL, B. C. and MUKHOLM, L. J. (2015) Visual soil evaluation: Releasing potential crop production with minimum environmental impact. In USA: CABI, Walingford, 2015. 172 p. ISBN 978780644707 BIEDERMAN, L. A. and HARPOLE, W. S. (2013) Biochar and its effect on plant productivity and nutrient cycling: A Metaanalysis. In Bioenergy, vol. 5, pp. 202–214. DOI: https://dx.doi. org/10.1111/gcbb.12037 BOIX-FAYOS, C. et al. (2001) Influence soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. In Catena, vol. 44, pp. 47–67. DOI: https://doi.org/10.1016/ S0341-8162(00)00176-4 BRODOWSKI, S. et al. (2006) Aggregate – occluded black carbon in soil. In European Journal of Soil Science, vol. 57, pp. 539– 546. DOI: https://doi.org/10.1111/j.1365-2389.2006.00807.x BRONICK, C. J. and LAL, R. (2005) Soil structure and management: a review. In Geoderma., vol. 124, pp. 3–22. DOI: https://doi.org/10,1016/j. geoderma.2004.03.005BUTMAN, D. E. et al. (2015) Increased mobilization of aged carbon to rivers by human disturbance. In Nature Geoscience, vol. 8, pp. 112–116. DOI: https://doi.org/10.1038/hgeo2322 CONTE, P. (2014) Biochar, soil fertility, and environment. In  Biology and Fertility of Soils, vol. 50, pp. 1175–1175. DOI: https://doi.org/10.1007/S00374 CORNELISSEN, G. et al. (2013) Biochar effect on maize yeld and soil characteristics in five conservation farming sites in Zambia. In Agronomy, vol. 3, pp. 256–274. DOI: https://doi. org/10.3390/agronomy3020256 DEAL, CH. et al. (2012) Comparison of klin-derived and gasiefier-derived biochars as soil amendmets in the humid tropics. In Biomass and Bioenergy, vol. 37, pp. 161–168. DOI: https://doi.org/10.1016/j biombie. 2011.12.017 DEXTER, A. R. (1988) Advances in characterization of soil structure. In Soil and Tillage Research, vol. 11, pp. 199–238. DOI: https://doi.org/10.1016/0167-1987(88)90002-5 EDWARDS, A. P. and BREMNER, J. M. (1967) Microaggregates in soils. In European Journal of Soil Science, vol. 18, pp. 64–73. EVANGELOU, M. et al. (2014) Soil application of biochar produced from biomass grown on trace element contamined land. In Journal of Environmental Management, vol. 146, pp. 100–106. DOI: https://doi.org/10.1016/j.envman.2014.07.046 FENG, X. (2005) Chemical and mineralogical control on humic acid sorption to clay mineral surfaces. In Organic Geochemistry, vol. 36, pp. 1553–1566. DOI: https://doi. org/10.1016/org.geochem.2005.06.006 FISCHER, D. and GLASER, B. (2012) Synergisms between compost and biochar for sustainable. In KUMAR, Š. Managment of organic waste. In Tech China, 198 p. ISBN 978-953-307-925-7.GOLCHIN, A. et al. (1997) The effects of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by 13CNMR spectroscopy. I. Whole soil and humic acid fraction. In Geoderma, vol. 76, pp. 155–174. DOI: https://doi.org/10.1016/S0016-7061(96)00104-8 GREEN REPORT (2014). Green Report for 2013. Bratislava: Národné poľnohospodárske a potravinárke centrum, 2014. 65 s. ISBN 978.80-8058-597-6. GROSBELLET, G. et al. (2011) Improvement of soil structure formation by degradation of coarse organic matter. In Geoderma, vol. 162, pp. 27–38. DOI: https://doi.org/10.1016/j. geoderma.2011.01.003 GROSSMAN, J. M. et al. (2010) Amazonian anthrosols support similar microbial communities that differ distinetly from those extant in adjucent, unmodifield soils of the same mineralogy. In Microbial Ecology, vol. 60, pp. 192–205. DOI: https://doi.org/10.1007/S00248-010-989-3 GUILLOU, C et al. (2012) Linking microbial community to soil water-stable aggregation during crop residue decomposition. In Soil Biolog and Biochemistry, vol. 50, pp. 120–133. DOI: https:// doi.org/10.1016/j.soil/bio.2012.03.009 HANSEN, V. et al. (2017) The effects of straw or strawderived gasification biochar applications on soil quality and crop productivity. A farm case study. In Journal of Environmental Management, vol. 186, pp. 88–95. DOI: https://doi.org/10.1016/j. jenvman.2016.10.041 HAYNES, R. J. and NAIDU, R. (1998) Influence of lime, fertilizer and applications on soil organic matter content and soil physical condition: a review. In Nutrient Cycling in Agroecosystems, vol. 51, pp. 123–137. HEARTH, H. M. S. K. et al. (2013) Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and Andisol. In Geoderma, vol. 209–210, pp. 188–197. DOI: https:// doi.org/10.1016/j.geoderma. 2013.06.016 HELFRICH, M. et al. (2008) Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitationig of litter carbon and nitrogen. In Soil Biology and Biochemistry, vol. 40, pp. 1823–1834. DOI: https://doi. org/10.1016/j.soilbio.2008.03.006HORÁK, J. (2015) Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian Lowland. In Acta Horticulturae et Regiotecturae, vol. 18, pp. 20 – 24. DOI: https://doi.org/10.1515/ahr-2015-0005 HORÁK, J. and ŠIMANSKÝ, V. (2016) Effect of biochar and biochar combined with N-fertilizer on soil organic content. In Agriculture, vol. 62, pp. 155–158. DOI: https://doi.org/10.1515/ agri-2016-0016 HORÁK, J. and ŠIMANSKÝ, V. (2017) Effect of biochar on soil CO2 production. In Acta fytochenica et zootechnica, vol. 20, pp. 72–77. HORÁK, J. et al. (2017) Biochar and biochar with N fertilizer affect soil N2O emission in Halpic Luvisol . In Biologia, vol. 72, pp. 995–1001. DOI: https://doi.org/10.1515/biolog-2017-0109 HU, F. et al. (2015) Particles infiltration forces and their effects on soil aggregates breakdown. In Soil and Tillage Research, vol. 147, pp. 1–9. DOI: https://doi.org/10.1016/j.still.014.11.006 HUANG, B. et al. (2007) Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. In Geoderma, vol. 139, pp. 336–345. DOI: https://doi.org/j.geoderma.2007.02.012 HUSSIAN, M. et al. (2016) Biochar for crop production: potential benefits and risks. In Journal of Soils and Sediments, vol. 17, pp. 685–716. DOI: https://doi.org/10,1007/ s11368-016-1360-2 CHAN, K. Y. et al. (2007) Agronomic values of green waste biochar as a  soil amendment. In Australian Journal of Soil Research, vol. 45, pp. 629–634. CHAN, K. Y. et al. (2008) Using poultry litter biochars as soil amendments . In Australian Journal of Soil Research, vol. 46, pp. 437–444. DOI: https//doi.org/10.1016/10.1071/SK08036 CHENU, C. and COSENTINO, D. (2011) Microbial regulation of soil structural Dynamics. In RITZ, K. and YOUNG, I. The architecture and biology of soils: Life in innorspace. In CABI, Waling ford, Oxfordshire 0X108DE, UK, 2011, 244 p. ISBN-978-1-84593-531-0. INYANG, M. I. et al. (2016) A review of biochar as a low – cost absorbent for aqueous heavy metals removal. In Environmental Science and Technology, vol. 46, pp. 406–433. DOI: https://doi. org/10.1080/10643389. 2015.109880 JANKOWSKI, M. (2013) Gleby ochrowe. Pozycja w krajobrazie, właściwości, geneza i  miejsce w systematice. Wydawnictwo naukowe universytetu Mikołaja Kopernika, 2013. 128 p. ISBN 978-83-231-3033-8. JIEN, S. H. and WANG, CH. S. (2013) Effects of biochar on soil properties and erosial potencial in a higly weathered soil. In Catena, vol. 110, pp. 225–233. DOI: https://doi.org/10,1016/j. catena.2013.06.021JOSEPH, S. et al. (2013) Shifting paradingms: development of high – efficiency biochar fertilizers based on nano-structures and soluble components. In Carbon Management, vol. 4, pp. 323–343. DOI: https://doi.org/ 10.4155/emt.13.23 JOZEFACIUK, G. and CZACHOR, H. (2014) Impact of organic matter, iron oxides, aluminia, silica and drying on mechanical and water stability of artificial soil aggregates. Assesment of new method to study water stability. In Geoderma, vol. 221–222, pp. 1–10. DOI: https://doi.org/10.1016/j.geoderma.2014.01.020 KARAMI, N. et al. (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. In Journal of Hazardous Material, vol. 191, pp. 41–48. DOI: https://doi.org/10.1016/j. jhazmat.2011.04.025 KAY, B. and ANGERS, A. (2001) Soil structure. In SUMNER, M. E. Handbook of Soil Science. In CRP Press Boca Raton, Florida, FL, USA, 2001. 400p. ISBN 9781420041651 KEILUWEIT, M. et al. (2010) Dynamic molecular structure of plant biomass-dirived black carbon (biochar). In Environ. Csi. Technol., vol. 44, pp. 1247–1253. DOI: https://doi.org/10.1021/ e69031419 KHORAMDEL, S. et al. (2013) Evaluation of carbon sequestration potential in corn field with different management systems. In Soil and Tillage Research, vol. 133, pp. 25–31. DOI: https://doi.org/10.1016/j.still. 2013.04.008 KOOKANA, R. S. et al. (2011) Chaper three – Biochar application to soil: Agronomic and environmental benefits and unitended consequences. In Agronomy, vol. 112, pp. 103–143. DOI: https://doi.org/10.1016/B978-0-12-385538-1-00003-2 LAGHARI, M, et al. (2015) Effects of biochar application rate on sandy desert soil properties and sorghum growth. In Catena, vol. 135, pp. 313, 320. DOI: https://doi.org/10.1016/j. catena.2015.08.013 LAIRD, D. et al. (2010) Biochar impact on nutrient leachting from a Midwestern agricultural soil. In Geoderma, vol. 158, pp. 436–442. DOI: https://doi.org/10.1016/j.geoderma.2010.05.012 LEHMANN, J. and JOSEPH, S. (2009) Biochar for environmental management. Science, technology and implementation. New York: Routledge, 2 Park Square, Milton Park, Abirgdon, 2009. 907 p. ISBN 978-1-84407-658-1. LEHMANN, J. et al. (2011) Biochar effects on soil biota – A review. In Soil Biology and Biochemistry, vol. 43, pp. 1812– 1836. DOI: https://doi.org/10.1016/j.soilbio.2011.04.022 LI, G. and FAN, H. (2014) Effect of freze-thaw on water stability of aggregates in a  black soil of northest China. In Pedosphere, vol. 24, pp. 285–290. DOI: https://doi.org/10.1016/ S1002-0160(14)60015-1 LI, Y. et al. (2012) In situ preparation of biochar coated silica material from rice husk. In Colloids and Surfaces, vol. 395, pp. 157–160. DOI: https://doi.org/10.1016/j.colsurfa.2011.12.023 LIMA, I. and MARSHALL, W. (2005) Utilization of tenkey manure as granular activated carbon: Physical, chemical and adsorptive properties. In Waste Management, vol. 25, pp. 726– 732. DOI: https://doi.org/10.1016/j.wasman.2004.12.019 LIN, Y. et al. (2012) Water extractable organic carbon is untreated and chemical treated biochars. In Chemosphere, vol. 17, pp. 151–157. DOI: https://doi.org/10.1016/j. chemosphere.2011.12.007LIU, Y. et al. (2011) Reducing CH4 and CO2 emission from water logged paddy soil with biochar. In Journal of Soils and Sediments, vol. 11, pp. 930–939. DOI: https://doi.org/10.1007/ s11368-011-0376-x LIU, Z. et al. (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. In Plos one, vol. 12. DOI: https://doi.org/10.1371/journal.pone.0179079 MA, N. et al. (2015) Biochar improves soil aggregate stability and water availability in a Mollisol after three years of field application. In Pedoshere, vol. 25, pp. 713–719. DOI: https://doi. org/10.1016/S1002-0160(15) 30052-7 MUKHERJEE, A. and LAL, R. (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. In Agronomy, vol. 3, pp. 313–339. DOI: https://doi.10.3390/agronomy3020313 MUKHERJEE, A. et al. (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. In Science of The Total Environment, vol. 487, pp. 26–36. DOI: https://doi.org/10.1016/j. scitotenv.2014.03.141 MUKHOLM, L. J. et al. (2002) Tensile strength of soil cores in relation to aggregation strength, soil fragmentation and pore characteristic. In Soil and Tillage Research, vol. 64, pp. 125–135. DOI: https://doi.org/10.1016/S0167-1987(01)00250-1 MUKOME, F. N. D. et al. (2013) The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emission from a fertile soil. In Geoderma, vol. 200–201, pp. 90– 98. DOI: https://doi.org/10.1016/j.geoderma.2013.02.004 NEIRA, J. et al. (2015) Oxygen diffusion in soils: Understanding the factors and process needed for modeling. In Journal of Agricultural Research, vol. 75. DOI: https://dx.doi. org/10.4067/S0718-583920150003000005 NORTHON, J. B. et al. (2012) Loss and recovery of soil organic carbon and nitrogen in a semiarid agroecosystem. In Soil Sci. Soc. Am. J., vol. 76, pp. 505–514. DOI: https://doi.org/10.213/ sssaj.2011.0284 NOVAK, J. M. et al. (2012) Biochar impact on soil-moisture storage in an Ultisol nad two Aridisols. In Soil Science, vol. 177, pp. 310–320. DOI: https://doi.org/10.1097/SS.0b013e31824e5593 OADES, J. M. and WATERS, A. G. (1991) Aggregate hierarchy in soil. In Australian Journal of Soil Research, vol. 29, pp. 815–828. DOI: https://doi.org/10.1071/SR9910815 OBIA, A. et al. (2016) In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. In Soil and Tillage Research, vol. 155, pp. 35–44. DOI: https://doi. org/10.1016/j.still.2015.08.002 OLESZCZUK, P. et al. (2014) Microbial, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. In Geoderma, vol. 213, pp. 502–511. DOI: https://doi. org/10.1016/j.geoderma.2013.08.027 ORAM, N, J. et al. (2014) Soil amendment witch biochar increases the competetive ability of legumes via increased potassium availability. In Agriculture, Ecosystems and Environment, vol. 191, pp. 92–98. DOI: https://doi.org/10.1016/j. agee.2014.03.031 PARADELO, R. et al. (2013) Water-dispersible clay in bare fallow soil after 80 years of continuos fertilizer addition. In Geoderma, vol. 200–201, pp. 40–44. DOI: https://doi. org/10.1016/j.geoderma.2013.01.014PICCOLO, A. and MBAGWO, J. S. C. (1999) Role of hydrophobic components of soil organic matter in soil aggregate stability. In American Society of Agronomy, vol. 63, pp. 1801–1810. DOI: https://doi. org/10.2136/sssaj/1999. 9361801x PIETIKAINEN, J. et al. (2000) Does short-term heating of forest humus change its properties os a substrate for microbes?  In Soil Biology and Biochemistry, vol. 32, pp. 277–288. DOI: https://doi.org/10.1016/S0038-0717(99)00164-9 POLLÁKOVÁ, N. et al. (2017) The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soil of selected Slovak and Czech hilly lands. In Journal of Soil Sediments, vol. 13, pp. 1–11. DOI: https://doi.org/10.1007/ s11368-017-1842-x PROVENZANO, M. R. et al. (2014) Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. In Waste Management, vol. 34, pp. 653–660. DOI: https://doi. org/10.1016/j.wasman.2013.12.001 RAHMAN, M. T. et al. (2017) The roles of organic amendments and microbial community in the improvement of soil structure of a Vertisol. In Applied Soil Ecology, vol. 111, pp. 84–93. DOI: https://doi.org/10.1016/j.apsoil.2016.11.018 RAJKOVICH, S. et al. (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperature soil. In Biology and Fertility of Soil, vol. 48, pp. 271–284. DOI: https://doi.org/10.1007/S00374-011-0624-7 SANTOS, D. et al. (1997) Uniform separatis of concentric surface layers from soil aggregates. In Soil Science of America Journal Abstract, vol. 61, pp. 720–724. STEFANIUK, M. and OLESTCZUK, P. (2015) Characterization of biochars produced from residues from biogas production. In Journal of Analytical and Applied Pyrolysis, vol. 115, pp. 157– 165. DOI: https://doi.org/10.1016/j.jaap.2015.07.011SZOMBATOVÁ, N. (1999) Comparison of soil carbon surceptibility to oxidation by KNMO4 in different farming system in Slovakia. In Humic Substances in The Enviroment, vol. 1, pp. 35–39. ŠIMANSKÝ, V. et al. (2017) Biochar and biochar with N fertilizer as a  potential tool for improving soil sorption of nutrients. In Journal of Soil and Sediments, pp. 1–9. DOI: https:// doi.org/10.1007/s11368-017-1886-y ŠIMANSKÝ, V. (2016) Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. In Acta fytotechnica et zootechnica, vol. 19, pp. 129–138. DOI: http://dx.doi.org/10.15414/afz.2016.19.04.129-138 ŠIMANSKÝ, V. (2017) Is the period of 18 years sufficient for an evaluation of changes in soil organic carbon under a variety of different soil management practices? In Communications in Soil Science and Plant Analysis, vol. 48, pp.37–42. DOI: https:// doi.org/10.1080/00103624.2016.1253717 ŠIMANSKÝ, V. and BAJČAN, D. (2014) Stability of soil aggregates and their ability of carbon sequestration. In Soil and Water Res., vol. 9, pp. 111–118 ŠIMANSKÝ, V. and POLLÁKOVÁ, N. (2014) Soil organic matter and sorption capacity under different soil management practices in a  productive vineyard. In Archives of Agronomy and Soil Science, vol. 59, pp. 1145– 1154. DOI: https://doi.org/10.108003650340.865837 ŠIMANSKÝ, V. and POLLÁKOVÁ, N. (2016) The effects of soil management particles on soil organic matter changes within a productive vineyard in the Nitra viticulture area (Slovakia). In Agriculture, vol. 61, pp. 28–40. DOI: https://doi.org/10.1515/ agri-2016-0001 ŠIMANSKÝ, V. et al. (2013) The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. In Catena, vol. 101, pp. 108–113. DOI: https://doi.org/10.1016/j.catena.2012.10.011 ŠIMANSKÝ, V. et al. (2016) How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? In Biologia, vol. 71 (9), pp. 989–995. DOI: http://dx.doi.org/10.1515/biolog-2016-0122 ŠIMANSKÝ, V. et al. (2017a) Carbon sequestration in waterstable aggregates under biochar and biochar with nitrogen fertilization. In Bulgrian Journal of Agricultural Research, vol. 23, no. 3, pp. 429–435. USMAN, A. R. et al. (2015) Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. In Journal of Analytical and Applied Pyrolysis, vol. 115, pp. 392–400. DOI: https://doi. org/10.1016/j.jaap.2015.08.016WANG, K. and XING, B. (2005) Structural and sorption characteristics of adsorped humid acid on clay minerals. In American Society of Agronomy, vol. 31, pp. 342–349. DOI: https://doi.org/10.2134/jeg2005.0342 YEBOAH, E. et al. (2009) Improving soil productivity through biochar amendments to soil. In African Journal of Environmental Science and Technology, vol. 3, pp. 34–41. ZHANG, A. et al. (2010) Effect of biochar amendment on yield and methane and nitrous oxide emission from rice paddy from Tai Lake plain, China. In Agriculture, Ecosystems and Environment, vol. 139, pp. 469–475. DOI: https://doi. org/10.1016/j.agee.2010.09.003 ZIELIŃSKA, A. et al. (2015) Effect of sewage sludge properties on the biochar characteristic. In Journal of Analytical and Applied Pyrolysi

    Differences in soil properties and crop yields after application of biochar blended with farmyard manure in sandy and loamy soils

    Get PDF
    Article Details: Received: 2018-07-07 | Accepted: 2018-01-18 | Available online: 2019-01-31https://doi.org/10.15414/afz.2019.22.01.21-25In recent years, the importance of biochar application in world´s soils have increased tendency mainly due to its opposite effects. Therefore, the effort of many companies is based on the development of soil amendment which together improved properties and crop productivity in a lot of soils. In this short study, we have verified the effectiveness of biochar blended with farmyard manure named Effeco on soil properties and crop yields in different textural soils (1. sandy soil in Dolná Streda and 2. loamy soil in Veľké Uľany). Our results showed that the Effeco increased soil pH in both soils. In sandy soil, the Effeco more significantly affected sorptive parameters and soil organic carbon content than in loamy soil. Water retention in capillary pores after Effeco application in sandy and loamy soils was higher by 22% and 4%, respectively compared to control. On the other hand, more significant effect of Effeco application on soil structure was observed in loamy soil. The total crop productions in sandy and loamy soils due to the Effeco application were higher by 82% and 16%, respectively, compared to control plots. All in all, we concluded that the effects of biochar blended with farmyard manure differ mainly on soil texture.Keywords: Effeco, sorptive parameters, soil organic matter, water retention, soil structure, loamy soil, sandy soilReferences:Agegnehu, G. et al. (2016) Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Tot. Environ., 543, pp. 295–306.Ahmad , M. et al. (2014) Biochar as asorbent for contaminant management in soil and water: a review. Chemosphere, 99, pp. 19–33. doi: https://doi.org/10.1016/j.chemosphere.2013.10.071AJAYI, A.E. and HORN, R. (2016) Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Tillage Res. doi: http://dx.doi.org/10.1016/j.still.2016.01.011Brodowski , S. et al. (2006) Aggregate-occluded black carbon in soil. Eur. J. Soil Sci., no. 57, pp. 539–546.DONG, X. et al. (2019) Biochar increased field soil inorganic carbon content five years after application. Soil & Tillage Research, no. 186, pp. 36–41. Doi: https://doi.org/10.1016/j.still.2018.09.013El-Naggara , A. et al. (2019) Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, pp. 536–557. doi: https://doi.org/10.1016/j.geoderma.2018.09.034Fischer, D. and Glaser, B. (2012) Synergisms between Compost and Biochar for Sustainable Soil Amelioration. In Kumar, S. (ed.) Management of Organic Waste. Earthscan, Rijeka, pp. 167–198.Haider, G. et al. (2017) Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ., 237, pp. 80–94. doi: https://doi.org/10.1016/j.agee.2016.12.019Hrivňákov á, K. et al. (2011) Uniform methods of soil analyses (in Slovak) VÚPOP: Bratislava.IBI (2013) Standarized product definition and product testing guidelines for biochar that i sused in soil, IBI-STD-0.1-1, International Biochar Initiative.Ibrahim , H.M. et al. (2013) Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci., 178, pp.165–173.Jeffery , S. et al. (2011) A quantitative review of the effects of biochar application to soils on crop productivity using metaanalysis. Agr. Ecosyst. Environ., 144, pp. 175–187.Kotorov á, D. et al. (2018) The long-term different tillage and its effect on physical properties of heavy soils. Acta fytotechn zootechn, vol. 21, no. 3, pp. 100–107. doi: https://doi.org/10.15414/afz.2018.21.03.100-107Laghari , M. et al. (2015) Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135, pp. 313–320. doi: https://doi.org/10.1016/j.catena.2015.08.013LEHMANN, J. and JOSEPH, S. (eds.). (2015) Biochar for environmental management. 2nd ed. London, New York: Routledge, Taylor and Francis Group. 544 p.Lopez-Capel, E. et al. (2016) Biochar properties, In: Shackley, S. et al. (eds.): Biochar in European soils and agriculture, Routledge, London, New Your, pp. 41–72.Obia, A. et al. (2016) In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res., 155, pp. 35–44. doi: http://dx.doi.org/10.1016/j.still.2015.08Omondi, M.O. et al. (2016) Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, pp. 28–34. Doi: https://doi.org/10.1016/j.geoderma.2016.03.029Pollákov á, N. et al. (2018) The influence of soil organic matter fractions in aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. Journal of Soils and Sediment, vol. 18, no. 8, pp. 2790–2800.ŠIMANSKÝ, V. et al. (2017) Carbon sequestration in waterstable aggregates under biochar and biochar with nitrogen fertilization. Bulgrian Journal of Agricultural Research, vol. 23, no. 3, pp. 429–435.Szombathov á N. (2010) Chemical and physico-chemical properties of soil humic hubstances as an indicator of anthropogenic changes in ecosystems (localities Báb and Dolná Malanta). Nitra: Slovak Univ. of Agriculture (in Slovak).van Zwieten, L. et al. (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 327, pp. 235–246.WANG, Y. et al. (2013) Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energ. Fuel., 27, pp. 5890–5899.Zhang, R. et al. (2017) Biochar enhances nut quality of Torreyagrandi sand soil fertility under simulated nitrogen deposition. For. Ecol. Manag., 391, pp. 321–329. doi: https://doi.org/10.1016/j.foreco.2017.02.036Zimmerman , A.R. et al. (2011) Positive and negative carbon mineralization priming effects among a variety of biocharamended soils. Soil Biology and Biochemistry, 43, pp. 1169–1179

    THE DEVELOPMENT OF A NEW ADSORPTION-DESORPTION DEVICE

    Get PDF
    The aim of this work was to construct a new adsorption-desorption device based on the principle of separation of volatile organic compounds, e.g., ethanol. As an adsorbent, it is possible to use granulated activated carbon (GAC) in the adsorption and desorption process. In this study, two kinds of GACs were used and marked as GAC1 and GAC2. A particle size distribution and water vapour sorption for the selected GACs were measured. An experiment with distilled water was performed as a preliminary study of the new device’s functionality. After the determination of the time necessary for the adsorption and desorption, the experiments were carried out with a model mixture (5% v/v ethanol-water mixture), which resulted in a product with the ethanol content of 39.6 %. The main advantage of this device would be the potential competition of conventional distillation

    DESIGN OF PARTICULATE MATERIAL COMPACTOR ROLLS DIAMETER

    Get PDF
    At present, in a period of an industrial expansion great emphasis is placed on the environment. That means aiming for a reduced energy consumption, and also lessening dustiness from very fine powder material. This category also includes particulate material agglomeration processes. Because this process is very energy-intensive, it is necessary to correctly design these devices. The aim of this paper is to focus on a theoretical design of a production compactor with the rolls diameter for an experimental particulate material, based on Johanson’s theory and experimentally measured material properties. The material used for experimental measurements was an NPK-based industrial fertilizer consisting of several components. The results of this paper is the dependence of the ratio of the maximum compression pressure to the initial compression pressure from the rolls diameter of the proposed compactor

    Effect of biochar on soil structure - review

    No full text
    Soil structure and organic matter are important indicators of soil quality. In the literature it states that there is a linear relation between soil structure and the organic matter. Mechanisms of formation and stabilization of aggregates have also been described in the literature, but it is evident that not every mechanism is applicable to various soil-climatic conditions. Recently, the modern but not the new term has become a biochar. It is anticipated that biochar is a significant source of C, and its application to the soil will improve the aggregation process in the soil. Lately we have been working in this area and we wanted to provide an overview of this issue through this review. The aim of this review was to collate and synthesize available information on soil structure and SOM. The emphasis of this review is on biochar and its combination with other organic and mineral fertilizers in relation to soil structure

    Shell and Tube Heat Exchanger – the Heat Transfer Area Design Process

    No full text
    Nowadays, the operating nuclear reactors are able to utilise only 1 % of mined out uranium. An effective exploitation of uranium, even 60 %, is possible to achieve in so-called fast reactors. These reactors commercial operation is expected after the year 2035. Several design configurations of these reactors exist. Fast reactors rank among the so-called Generation IV reactors. Helium-cooled reactor, as a gas-cooled fast reactor, is one of them. Exchangers used to a heat transfer from a reactor active zone (i.e. heat exchangers) are an important part of fast reactors. This paper deals with the design calculation of U-tube heat exchanger (precisely 1-2 shell and tube heat exchanger with U-tubes): water – helium

    Fertilization and Application of Different Biochar Types and their Mutual Interactions Influencing Changes of Soil Characteristics in Soils of Different Textures

    No full text
    If we want to develop farming on soil effectively and ecologically, we have to know the soil characteristics, the reasons for the potential low fertility and the ways how to eliminate them. Only this approach allows the rational utilization of the soil fund and achievement of the high effectiveness of the costs needed for the stabilization and increase of fertility and land capability. Recently, many scientific teams have focused their attention on the biochar, a lot of recommendations have been published which are dealing with its application into soil. However, the principal attention has been drawn to the impact of biochar on the particular soils and under the particular conditions. Far less information has been presented about the mutual interactions between the further significant agronomical factors in the combination with biochar. In this primary study, we analyze two new experiments established in the southwest part of Slovakia at the 1 Dolná Streda (sandy soil) and 2 Veľké Uľany (loamy soil) Localities. We discussed (1) the impact of the individual factors on the changes of soil characteristics, and (2) the impact of the individual interactions, such as: soil class – fertilization – biochar on the changes of the soil characteristics. The results indicated that the most significant factor, which influences the monitored soil parameters, is the soil class. The fertilization proved to be a factor which has a negative impact on the humus parameters; on the other hand, it improved the soil sorption. Biochar increased the content of the organic substances in soil and also its environmental effect of retention and immobilization of harmful elements and its positive effect on the soil structure was indicated. The highest frequency of the interactions between the monitored parameters related to the changes of soil characteristics was recorded in the combination fertilization x biochar, and also the soil class x fertilization x biochar

    Dynamic Image Analysis to Determine Granule Size and Shape, for Selected High Shear Granulation Process Parameters

    No full text
    The aim of this study was to investigate the usage of Dynamic Image Analysis for determination of size, shape and distribution of granules of microcrystalline cellulose, created by high shear granulation. A series of experiments was carried out to analyse the effect of process parameters on a created granule morphology. The amount of the granulation liquid and speed of the impeller have a significant effect on the median size granule value, the sphericity, the granule distribution width, but also on the granulation process yield

    The Influence of Wet Granulation Parameters on the Compaction Behavior and Tablet Strength of a Hydralazine Powder Mixture

    No full text
    The aim of this paper was to describe the influence of high-shear wet granulation process parameters on tablet tensile strength and compaction behavior of a powder mixture and granules containing hydralazine. The hydralazine powder mixture and eight types of granules were compacted into tablets and evaluated using the Heckel, Kawakita and Adams analyses. The granules were created using two types of granulation liquid (distilled water and aqueous solution of polyvinylpyrrolidone), at different impeller speeds (500 and 700 rpm) and with different wet massing times (without wet massing and for 2 min). Granulation resulted in improved compressibility, reduced dustiness and narrower particle-size distribution. A significant influence of wet massing time on parameters from the Kawakita and Adams analysis was found. Wet massing time had an equally significant effect on tablet tensile strength, regardless of the granulation liquid used. Granules formed with the same wet massing time showed the same trends in tabletability graphs. Tablets created using a single-tablet press (batch compaction) and an eccentric tablet press showed opposite values of tensile strength. Tablets from granules with a higher bulk density showed lower strength during batch compaction and, conversely, higher strength during eccentric tableting

    The Effect of Different Rates of Biochar and Biochar in Combination with N Fertilizer on the Parameters of Soil Organic Matter and Soil Structure

    No full text
    Since biochar is considered to be a significant source of carbon, in this work we have evaluated the changes in soil organic matter (SOM) and soil structure due to application of biochar and biochar with N fertilization, and have considered the interrelationships between the SOM parameters and the soil structure. The soil samples were collected from Haplic Luvisol at the locality of Dolná Malanta (Slovakia) during 2017. The field experiment included three rates of biochar application (B0 - no biochar, B10 - biochar at the rate of 10 t ha-1, B20 - biochar at the rate of 20 t ha-1) and three levels of N fertilization (N0 - no nitrogen, N160 - nitrogen at the rate of 160 kg ha-1, N240 - nitrogen at the rate of 240 kg ha-1). The rate of biochar at 20 t ha-1 caused an increase in the organic carbon (Corg) content. The combination of both rates of biochar with 160 and 240 kg N ha-1 also caused an increase in Corg. In the case of B20 the extractability of humic substances carbon (CHS) was 17.79% lower than at B0. A significant drop was also observed in the values of the extraction of humic acids carbon (CHA) and fulvic acids carbon (CFA) after the addition of biochar at a dose of 20 t ha-1 with 160 kg N ha-1. However, both rates of biochar had a significant effect at 240 kg N ha-1. After application of 20 t ha-1 of biochar the content of water-stable macro-aggregates (WSAma) significantly increased compared to control. This rate of biochar also increased the mean weight diameter (MWDW) and the index of water-stable aggregates (Sw) and decreased the coefficient of vulnerability (Kv). The biochar at a rate of 20 t ha-1 with 240 kg N ha-1 the value of MWDW increased and value of Kv decreased significantly. The contents of Corg and CL correlated positively with WSAma, MWDW and Sw and negatively with WSAmi and Kv. The extraction of CHA and CFA was in negative relationship with MWDW. We conclude that the application of biochar and biochar combined with N fertilizer had a positive influence on SOM and soil structure
    corecore