336 research outputs found

    A Radiant Flow Reactor For High-Temperature Reactivity Studies Of Pulverized Solids

    Get PDF
    Our radiant two‐phase flow reactor presents several new possibilities for high‐temperature reactivity studies. Most importantly, the thermal histories of the suspension and entrainment gas can be independently regulated over wide ranges. At low suspension loadings, outlet temperatures can differ by hundreds of degrees and gas temperatures are low enough to inhibit hydrocarbon cracking chemistry, so primary products are quenched as soon as they are expelled. With coal suspensions, tars were generated with the highest H/C ratio and lowest proton aromaticity ever reported. Alternatively, particles and gas can be heated at similar rates to promote secondary chemistry by increasing particle loading. Simply by regulating the furnace temperature, arbitrary extents of conversion of coal tar into soot were observed for fixed total mass loss. Under both circumstances heat fluxes are comparable to those in large furnaces, so relevant heating rates and reaction times are accessible. Suspensions remain optically thin even for the highest loadings of technological interest because they are only 1 cm wide. Consequently, the macroscopic behavior remains firmly connected to single‐particle phenomena. Mass and elemental closures are rarely breached by more than 5% in individual runs, so interpretations are not subject to inordinate scatter in the data. The reactor is also well suited for combustion studies, as demonstrated by extents of carbon and nitrogen burnout from 50% to 100% for various gas‐stream oxygen levels

    Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides

    Get PDF
    In an effort to develop reversible metal borohydrides with high hydrogen storage capacities and low dehydriding temperature, doping LiBH4 with various metal halides and hydrides has been conducted. Several metal halides such as TiCl3, TiF3, and ZnF2 effectively reduced the dehydriding temperature through a cation exchange interaction. Some of the halide doped LiBH4 are partially reversible. The LiBH4 + 0.1TiF3 desorbed 3.5 wt % and 8.5 wt % hydrogen at 150 and 450 °C, respectively, with subsequent reabsorption of 6 wt % hydrogen at 500 °C and 70 bar observed. XRD and NMR analysis of the rehydrided samples confirmed the reformation of LiBH4. The existence of the (B12H12)−2 species in dehydrided and rehydrided samples gives insight into the resultant partial reversibility. A number of other halides, MgF2, MgCl2, CaCl2, SrCl2, and FeCl3, did not reduce the dehydriding temperature of LiBH4 significantly. XRD and TGA-RGA analyses indicated that an increasing proportion of halides such as TiCl3, TiF3, and ZnCl2 from 0.1 to 0.5 mol makes lithium borohydrides less stable and volatile. Although the less stable borohydrides such as LiBH4 + 0.5TiCl3, LiBH4 + 0.5TiF3, and LiBH4 + 0.5ZnCl2 release hydrogen at room temperature, they are not reversible due to unrecoverable boron loss caused by diborane emission. In most cases, doping that produced less stable borohydrides also reduced the reversible hydrogen uptake. It was also observed that halide doping changed the melting points and reduced air sensitivity of lithium borohydrides

    TOXICITY CHARACTERISTIC LEACHING PROCEDURE APPLIED TO RADIOACTIVE SALTSTONE CONTAINING TETRAPHENYLBORATE: DEVELOPMENT OF A MODIFIED ZERO-HEADSPACE EXTRACTOR

    Get PDF
    In order to assess the effect of extended curing times at elevated temperatures on saltstone containing Tank 48H waste, saltstone samples prepared as a part of a separate study were analyzed for benzene using a modification of the United States Environmental Protection Agency (USEPA) method 1311 Toxicity Characteristic Leaching Procedure (TCLP). To carry out TCLP for volatile organic analytes (VOA), such as benzene, in the Savannah River National Laboratory (SRNL) shielded cells (SC), a modified TCLP Zero-Headspace Extractor (ZHE) was developed. The modified method was demonstrated to be acceptable in a side by side comparison with an EPA recommended ZHE using nonradioactive saltstone containing tetraphenylborate (TPB). TCLP results for all saltstone samples tested containing TPB (both simulant and actual Tank 48H waste) were below the regulatory limit for benzene (0.5 mg/L). In general, higher curing temperatures corresponded to higher concentrations of benzene in TCLP extract. The TCLP performed on the simulant samples cured under the most extreme conditions (3000 mg/L TPB in salt and cured at 95 C for at least 144 days) resulted in benzene values that were greater than half the regulatory limit. Taking into account that benzene in TCLP extract was measured on the same order of magnitude as the regulatory limit, that these experimental conditions may not be representative of actual curing profiles found in the saltstone vault and that there is significant uncertainty associated with the precision of the method, it is recommended that to increase confidence in TCLP results for benzene, the maximum curing temperature of saltstone be less than 95 C. At this time, no further benzene TCLP testing is warranted. Additional verification would be recommended, however, should future processing strategies result in significant changes to salt waste composition in saltstone as factors beyond the scope of this limited study may influence the decomposition of TPB in saltstone

    Controls of Initial Wood Decomposition on and in Forest Soils Using Standard Material

    Full text link
    Forest ecosystems sequester approximately half of the world’s organic carbon (C), most of it in the soil. The amount of soil C stored depends on the input and decomposition rate of soil organic matter (OM), which is controlled by the abundance and composition of the microbial and invertebrate communities, soil physico-chemical properties, and (micro)-climatic conditions. Although many studies have assessed how these site-specific climatic and soil properties affect the decomposition of fresh OM, differences in the type and quality of the OM substrate used, make it difficult to compare and extrapolate results across larger scales. Here, we used standard wood stakes made from aspen (Populus tremuloides Michx.) and loblolly pine (Pinus taeda L.) to explore how climate and abiotic soil properties affect wood decomposition across 44 unharvested forest stands located across the northern hemisphere. Stakes were placed in three locations: (i) on top of the surface organic horizons (surface), (ii) at the interface between the surface organic horizons and mineral soil (interface), and (iii) into the mineral soil (mineral). Decomposition rates of both wood species was greatest for mineral stakes and lowest for stakes placed on the surface organic horizons, but aspen stakes decomposed faster than pine stakes. Our models explained 44 and 36% of the total variation in decomposition for aspen surface and interface stakes, but only 0.1% (surface), 12% (interface), 7% (mineral) for pine, and 7% for mineral aspen stakes. Generally, air temperature was positively, precipitation negatively related to wood stake decomposition. Climatic variables were stronger predictors of decomposition than soil properties (surface C:nitrogen ratio, mineral C concentration, and pH), regardless of stake location or wood species. However, climate-only models failed in explaining wood decomposition, pointing toward the importance of including local-site properties when predicting wood decomposition. The difficulties we had in explaining the variability in wood decomposition, especially for pine and mineral soil stakes, highlight the need to continue assessing drivers of decomposition across large global scales to better understand and estimate surface and belowground C cycling, and understand the drivers and mechanisms that affect C pools, CO2 emissions, and nutrient cycles
    • 

    corecore