8 research outputs found
Particle orientation from distribution of explosion fragments in XFEL experiment
In many XFEL experiments small objects with unknown orientations are introduced into the x-ray beam. However, understanding the measured quantities it would be desirable to know their orientations. This is the situation in the case of single-molecule imaging one of the main target areas of X-ray free-electron lasers. Here, the solution to the orientation problem is based on the possibility of orienting the large number of low-counting-statistics 2D diffraction patterns taken at random orientations of identical replicas of the sample. This is a difficult process and the low statistics limits the usability of these methods and ultimately it could prevent single-molecule imaging. We suggest a new approach, which avoids the use of the diffraction patterns. We propose to determine the sample orientation through identifying the direction of ejection fragments. The orientation of the sample is measured together with the diffraction pattern by detecting some fragments of the Coulomb explosion. We show by molecular-dynamics simulations that from the angular distribution of the fragments one can obtain the orientation of the samples [1].The figure shows the distribution of heavy atoms coming from different depth of the sample ( upper panel homogeneous, lower panel inhomogeneous model samples, and left to right is heavy atom at the outer boundary, halfway to center and at the center).</jats:p
A fázisprobléma megoldásának új módszerei II. = New methods for solving the phase problem II.
A krisztallográfiai fázisproblĂ©ma megoldására általunk felfedezett charge flipping mĂłdszert több, a gyakorlatban azonnal alkalmazhatĂł irányba fejlesztettĂĽk tovább. Ăšj algoritmusváltozatokat, adatkezelĂ©st, paramĂ©terválasztást vezettĂĽnk be, amellyel egyrĂ©szt gyorsabban, másrĂ©szt jobb minĹ‘sĂ©gben oldhatĂłk meg a kristályszerkezetek. A fejlesztĂ©sek Ăşj alkalmazásokat is lehetĹ‘vĂ© tettek; az algoritmus egyik változata a negatĂv szĂłrássűrűsĂ©gű neutrondiffrakciĂłs adatok, mĂg egy másik, kĂĽlönbözĹ‘ tĂpusĂş, sĂşlyosan hiányos adatok esetĂ©n működik kiválĂłan. UtĂłbbi esetben, akár a krisztallográfiai irodalomban szokásos adatok 1/8-val is lehetsĂ©ges jĂł minĹ‘sĂ©gű szerkezetmeghatározás. A kristályos alapállapot elmĂ©letĂ©vel is rĂ©szletesen foglalkoztunk. Az atomok közötti Fourier-transzformálhatĂł kölcsönhatások Ă©s a kristályos rend kapcsolatának matematikailag egzakt leĂrását adtuk egyes speciális, a puhaanyag-fizikához köthetĹ‘ esetekben. Kristályok helyett molekulák azonos replikáin alapul az atomi szerkezet meghatározásának egy teljesen Ăşj mĂłdszere, az egyrĂ©szecske-lekĂ©pezĂ©s. A kĂsĂ©rlet csak szabadelektron-lĂ©zereknĂ©l lehetsĂ©ges, Ă©s mĂ©g számos kihĂvást jelent. Ezek közĂĽl mi az adatelĹ‘kĂ©szĂtĂ©s problĂ©máját oldottuk meg, iteráciĂłs mĂłdszert alkottunk, amely az ismeretlen orientáciĂłjĂş Ă©s rendkĂvĂĽl zajos 2D diffrakciĂłs kĂ©peket szerkezetmeghatározásra alkalmas 3D adatkĂ©szlettĂ© alakĂtja. | Our charge flipping method, that solves the crystallographic phase problem, was further developed with practical utilization in mind. We introduced new algorithm variants, data treatments and parameter choices, that helped to determine crystal structures both faster and at better quality. These developments also allowed new applications; one of the algorithm variants works well in the case of negative scattering density, and an other in various instances of seriously incomplete data. In the latter case, high quality structure determination is feasible using only 1/8-th of the data expected in the crystallographic literature. We also investigated the ground state of crystals with mathematical rigour. The relationship of Fourier-transformable atomic interactions and crystal order was described, the special cases treated are related to soft matter physics. Our third theme is single particle imaging, a new method of structure determination that is not based on crystals but on molecular replicas. The experiment is only made possible by free electron lasers, and it still poses a number of challenges. We worked on the problem of data preparation, and solved it by creating an iterative procedure that is capable of composing a single high-quality 3D dataset from the large number of noisy 2D images of unknown orientation
Phase field theory of crystal nucleation in hard sphere liquid
The phase field theory of crystal nucleation described in [L. Granasy, T.
Borzsonyi, T. Pusztai, Phys. Rev. Lett. 88, 206105 (2002)] is applied for
nucleation in hard--sphere liquids. The exact thermodynamics from molecular
dynamics is used. The interface thickness for phase field is evaluated from the
cross--interfacial variation of the height of the singlet density peaks. The
model parameters are fixed in equilibrium so that the free energy and thickness
of the (111), (110), and (100) interfaces from molecular dynamics are
recovered. The density profiles predicted without adjustable parameters are in
a good agreement with the filtered densities from the simulations. Assuming
spherical symmetry, we evaluate the height of the nucleation barrier and the
Tolman length without adjustable parameters. The barrier heights calculated
with the properties of the (111) and (110) interfaces envelope the Monte Carlo
results, while those obtained with the average interface properties fall very
close to the exact values. In contrast, the classical sharp interface model
considerably underestimates the height of the nucleation barrier. We find that
the Tolman length is positive for small clusters and decreases with increasing
size, a trend consistent with computer simulations.Comment: 7 pages, 7 figure
Rugalmas röntgenszórás a szerkezetkutatásban = Elastic x-ray scattering in structural research
Kutatásaink az atomi szerkezet röntgensugárzással valĂł vizsgálatát cĂ©lozták. Ezen belĂĽl kutatásunk három fĹ‘ irányban folyt: 1. Megvizsgáltuk, hogy a közeljövĹ‘ben Ă©pĂĽlĹ‘ lineáris gyorsĂtĂłkon alapulĂł szabad elektron lĂ©zer tĂpusĂş röntgenforrásokkal (Free Electron Laser, FEL) lesz-e lehetĹ‘sĂ©g egyedi, kis, nem-periodikus rĂ©szecskĂ©k atomi szintű szerkezet-meghatározására. MegállapĂtottuk, hogy a sikeres szerkezet-meghatározáshoz a tervezetnĂ©l rövidebb impulzushosszal rendelkezĹ‘ forrásokra lesz szĂĽksĂ©g. Megmutattuk, hogy a folytonos szĂłráskĂ©pbĹ‘l a "Fineup input-output" algoritmus egy mĂłdosĂtott változatával rekonstruálhatĂł az eredeti atomi szerkezet. RĂ©szletesen diszkutáltuk, hogy a teljes 3D szĂłráskĂ©p előállĂtásához szĂĽksĂ©ges klasszifikáciĂłs eljárás milyen feltĂ©telek között működik. 2. A holografikus mĂłdszerekkel rokon mĂ©rĂ©si eljárások elmĂ©leti Ă©s gyakorlati megvalĂłsĂtásán dolgoztunk. SzĂ©lesĂtettĂĽk a röntgen fluoreszcens holográfia alkalmazási terĂĽletĂ©t, kĂ©t Ăşj anyag vizsgálatával (ThAs Se Kondo rendszer Ă©s La1-xSrxMnO3 mágneses kolosszális mágneses ellenállást mutatĂł rendszer). Egy Ăşj mĂ©rĂ©si eljárást vezettĂĽnk be, a szögintegrált rugalmas szĂłrást, amely számos elĹ‘nyös tulajdonsággal rendelkezik a hagyományos szerkezet-meghatározĂł mĂ©rĂ©sekkel összehasonlĂtva. 3. Hagyományos röntgendiffrakciĂłs mĂłdszerekkel vizsgáltuk ismeretlen, Ăşj anyagok szerkezetĂ©t. Meghatároztuk, fullerĂ©n Ă©s kubán molekulák alkotta vegyĂĽletek szerkezetĂ©t, Ă©s tanulmányoztuk a hĹ‘mĂ©rsĂ©kletváltozás eredmĂ©nyekĂ©nt lĂ©trejövĹ‘ fázisátalakulásokat. | We worked on atomic level structure determination by x-rays. Our research was centered on three main points: 1. We examined the possibility of structure reconstruction of small, non-periodic single particles using x-ray free electron laser type sources. We have shown that the pulse length has to be significantly shortened (compared to present day planes) for successful reconstruction. Further, we illustrated that a modified version of the Fineup input-output algorithm can be used to reconstruct the original atomic structure. We also discussed in detail the conditions in which the classification process could work. 2. We worked on theoretical and practical sides of holographic and related methods. We applied x-ray fluorescent holography to a Kondo system (ThAsSe) and a colossal magnetic resistivity material (La1-xSrxMnO3), this way widening the application of holography. We introduced a new measuring method (the angular integrated elastic scattering), which has several advantages compared to classical methods. 3. Using traditional x-ray diffraction techniques we investigated the atomic structure of new compounds. We determined the structure of new fullerene-cubane compounds and studied the phase transitions as a function of the temperature
Holografikus módszerek a szerkezetkutatásban = Holographic methods in structural research
Az atomi felbontásĂş röntgen holográfia elmĂ©leti alapjait 1991-ben dolgoztuk ki Ă©s nĂ©hány Ă©vel kĂ©sĹ‘bb vĂ©geztĂĽk el az elsĹ‘ sikeres kĂsĂ©rletet. Jelen pályázat fĹ‘ cĂ©lja az atomi felbontásĂş röntgen holográfia Ă©s egy Ăşj, a holográfiával rokon mĂ©rĂ©si mĂłdszer, a szögátlagolt rugalmas szĂłrás továbbfejlesztĂ©se Ă©s alkalmazása volt. Holográfia mĂ©rĂ©sek segĂtsĂ©gĂ©vel kimutattuk, hogy a La0.7Sr0.3MnO3 kristály fázisátalakulásánál nem lĂ©p fel statikus Jahn-Teller torzulás, ahogy korábban feltĂ©teleztĂ©k. KĂsĂ©rleti adatokbĂłl megmutattuk, hogy a szögátlagolt szĂłrás eredmĂ©nyekĂ©nt kapott kĂ©p ugyanazt az informáciĂłt hordozza, mint a hagyományos egykristály diffrakciĂł során egyenkĂ©nt összegyűjtött intenzitás adatok. MegvalĂłsĂtottunk egy Ăşjfajta elektron holográfia mĂ©rĂ©st egy erre a cĂ©lra átĂ©pĂtett pásztázĂł elektron mikroszkĂłp segĂtsĂ©gĂ©vel. EredmĂ©nyeket Ă©rtĂĽnk el a holografikus Ă©s diffrakciĂłs kiĂ©rtĂ©kelĂ©si mĂłdszerek továbbfejlesztĂ©se terĂ©n. Kidolgoztunk egy eljárást a kis intenzitásĂş szĂłráskĂ©pek osztályozására a röntgen szabadelektron lĂ©zereknĂ©l egyedĂĽlállĂł molekulákon vĂ©gzendĹ‘ szĂłráskĂsĂ©rletekhez. | The theoretical foundations of atomic resolution x-ray holography were developed in 1991, and followed by the first successful experiment a few years later. The aim of the present project was the further development and application of the atomic resolution x-ray holography and a new related method, the angular integrated elastic scattering. Based on holography measurements, we have shown that in spite of earlier predictions, no static Jahn-Teller distortion occurs at the phase transition of the La0.7Sr0.3MnO3 crystal. We have shown from experimental data that the angular integrated elastic scattering pattern contains the same information as the intensity data of the conventional x-ray diffraction experiments. A novel electron holography experiment was realized using a scanning electron microscope modified for this purpose. Further development of holographic and diffraction evaluation methods was achieved. We have also developed a new method for the classification of low-intensity diffraction patterns for the single molecule imaging experiments of the x-ray free electron lasers
Orienting single-molecule diffraction patterns from XFELs using heavy-metal explosion fragments
Abstract – Single-molecule imaging is one of the main target areas of X-ray free-electron lasers.
It relies on the possibility of orienting the large number of low-counting-statistics 2D diffraction
patterns taken at random orientations of identical replicas of the sample. This is a difficult process
and the low statistics limits the usability of orientation methods and ultimately it could prevent
single-molecule imaging.We suggest a new approach, which avoids the orientation process from the
diffraction patterns. We propose to determine sample orientation through identifying the direction
of ejection fragments. The orientation of the sample is measured together with the diffraction
pattern by detecting some fragments of the Coulomb explosion. We show by molecular-dynamics
simulations that from the angular distribution of the fragments one can obtain the orientation of
the samples