47 research outputs found

    Anatomical and diffusion MRI of deep gray matter in pediatric spina bifida

    Get PDF
    AbstractIndividuals with spina bifida myelomeningocele (SBM) exhibit brain abnormalities in cortical thickness, white matter integrity, and cerebellar structure. Little is known about deep gray matter macro- and microstructure in this population. The current study utilized volumetric and diffusion-weighted MRI techniques to examine gray matter volume and microstructure in several subcortical structures: basal ganglia nuclei, thalamus, hippocampus, and amygdala. Sixty-six children and adolescents (ages 8–18; MΒ =Β 12.0, SDΒ =Β 2.73) with SBM and typically developing (TD) controls underwent T1- and diffusion-weighted neuroimaging. Microstructural results indicated that hippocampal volume was disproportionately reduced, whereas the putamen volume was enlarged in the group with SBM. Microstructural analyses indicated increased mean diffusivity (MD) and fractional anisotropy (FA) in the gray matter of most examined structures (i.e., thalamus, caudate, hippocampus), with the putamen exhibiting a unique pattern of decreased MD and increased FA. These results provide further support that SBM differentially disrupts brain regions whereby some structures are volumetrically normal whereas others are reduced or enlarged. In the hippocampus, volumetric reduction coupled with increased MD may imply reduced cellular density and aberrant organization. Alternatively, the enlarged volume and significantly reduced MD in the putamen suggest increased density

    The Timing and Strength of Regional Brain Activation Associated with Word Recognition in Children with Reading Difficulties

    Get PDF
    The study investigates the relative degree and timing of cortical activation across parietal, temporal, and frontal regions during performance of a continuous visual-word recognition task in children who experience reading difficulties (N = 44, RD) and typical readers (N = 40, NI). Minimum norm estimates of regional neurophysiological activity were obtained from magnetoencephalographic recordings. Children with RD showed bilaterally reduced neurophysiological activity in the superior and middle temporal gyri, and increased activity in rostral middle frontal and ventral occipitotemporal cortices, bilaterally. The temporal profile of activity in the RD group, featured near-simultaneous activity peaks in temporal, inferior parietal, and prefrontal regions, in contrast to a clear temporal progression of activity among these areas in the NI group. These results replicate and extend previous MEG and fMRI results demonstrating atypical, latency-dependent attributes of the brain circuit involved in word reading in children with reading difficulties

    Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: an MRI investigation

    Get PDF
    Purpose: determine if language disorder in children with autistic disorder (AD) corresponds to abnormalities in hemispheric asymmetries in auditory language cortex. Methods: MRI morphometric study in children with AD (n = 50) to assess hemispheric asymmetries in auditory language cortex. A key region of interest was the planum temporale (PT), which is larger in the left hemisphere in most healthy individuals. Results: (i) Heschl’s gyrus and planum polare showed typical hemisphere asymmetry patterns; (ii) posterior Superior Temporal Gyrus (pSTG) showed significant rightward asymmetry; and (iii) PT showed a trend for rightward asymmetry that was significant when constrained to right-handed boys (n = 30). For right-handed boys, symmetry indices for pSTG were significantly positively correlated with those for PT. PT asymmetry was age dependent, with greater rightward asymmetry with age. Conclusions: results provide evidence for rightward asymmetry in auditory association areas (pSTG and PT) known to subserve language processing. Cumulatively, our data provide evidence for a differing maturational path for PT for lower functioning children with AD, with both pre- and post-natal experience likely playing a role in PT asymmetry

    Anomalous development of brain structure and function in spina bifida myelomeningocele. Dev Disabil Res Rev 2010

    No full text
    Spina bifida myelomeningocele (SBM) is a specific type of neural tube defect whereby the open neural tube at the level of the spinal cord alters brain development during early stages of gestation. Some structural anomalies are virtually unique to individuals with SBM, including a complex pattern of cerebellar dysplasia known as the Chiari II malformation. Other structural anomalies are not necessarily unique to SBM, including altered development of the corpus callosum and posterior fossa. Within SBM, tremendous heterogeneity is reflected in the degree to which brain structures are atypical in qualitative appearance and quantitative measures of morphometry. Hallmark structural features of SBM include overall reductions in posterior fossa and cerebellum size and volume. Studies of the corpus callosum have shown complex patterns of agenesis or hypoplasia along its rostral-caudal axis, with rostrum and splenium regions particularly susceptible to agenesis. Studies of cortical regions have demonstrated complex patterns of thickening, thinning, and gyrification. Diffusion tensor imaging studies have reported compromised integrity of some specific white matter pathways. Given equally complex ocular motor, motor, and cognitive phenotypes consisting of relative strengths and weaknesses that seem to align with altered structural development, studies of SBM provide new insights to our current understanding of brain structure-function associations. Key Words: Chiari II malformation; cerebellum; neuroimaging; structure; function; cortex; corpus callosum S pina bifida myelomeningocele (SBM) is a special type of neural tube defect whereby a failure in programmed fetal development (e.g., neural tube closure) at the level of the spine translates into substantially altered brain development, in both structural and functional domains. Both qualitative and quantitative studies have documented a remarkable degree of heterogeneity among individuals with SBM in terms of size, shape, and appearance of the cerebellum, corpus callosum, and cerebral cortex. Similarly, a wide range of cognitive strengths and relative weaknesses among individuals with SBM are also documented in the published literature. As highlighted below in the present paper, qualitative and quantitative investigations of brain regions hypothesized to be associated with cognitive strengths and weaknesses in individuals with SBM provide new insights into current models of brainbehavior associations in general. Although hydrocephalus commonly occurs in individuals with SBM, it will not be discussed in detail here, and readers are referred t
    corecore