37 research outputs found

    Virus-like particles derived from major capsid protein VP1 of different polyomaviruses differ in their ability to induce maturation in human dendritic cells

    Get PDF
    AbstractAs polyomavirus major capsid protein VP1-derived virus-like particles (VLPs) have been demonstrated to be highly immunogenic, we studied their interaction with human dendritic cells (hDCs). Exposure of hDCs to VLPs originating from murine (MPyV) or hamster polyomavirus (HaPyV) induced hDC maturation. In contrast, exposure of hDCs to VLPs derived from human polyomaviruses (BK and JC) and simian virus 40 (SV40) only marginally induced DC maturation. The hDCs stimulated by HaPyV- or MPyV-derived VLPs readily produced interleukin-12 and stimulated CD8-positive T-cell responses in vitro. The highest frequencies of activated T cells were again observed after pulsing with HaPyV- and MPyV-derived VLPs. Monocyte-derived hDCs both bound and internalized the various tested polyomavirus VP1-derived VLPs with different levels of efficiency, partially explaining their individual maturation potentials. In conclusion, our data suggest a high variability in uptake of polyomavirus-derived VLPs and potency to induce hDC maturation

    Morphology and distribution of phage-like particles in a eutrophic boreal lagoon* Virus-like particles Electron microscopy Curonian Lagoon

    No full text
    Abstract In this paper we present the results of direct observations of the morphology and size of phage-like particles by means of transmission electron microscopy (TEM) as a function of their spatial distribution in the shallow highly productive Curonian Lagoon of the Baltic Sea. In total, 26 morphologically different forms of phagelike particles were found. Different trends of distribution in terms of abundance, size and shape of virus-like particles were demonstrated. The total abundance of viruses varied from 1.91×10 7 ml −1 to 5.06×10 7 ml −1 . The virus to bacteria ratio (VBR) changed from 15.6 to 49 and was negatively associated with total bacterial numbers (r = −0.60; p < 0.05). The phages of family Myoviridae were the most diverse and were dominant at all stations

    Absence of evidence for viral infection in colony-embedded cyanobacterial isolates from the Curonian Lagoon

    No full text
    The aim of the present study was to assess the frequency of viral infections in colony-embedded cells of the cyanobacteria Aphanizomenon flos-aquae and Microcystis aeruginosa collected from the brackish Curonian Lagoon. Natural and mitomycin C-treated A. flos-aquae and M. aeruginosa samples were examined for the presence of viruses and lysis by a combination of light-, epifluorescence and transmission electron microscopy techniques. Here we report a lack of evidence for virus infection, progeny formation and cell lysis in colony-embedded cells of A. flos-aquae and M. aeruginosa. These results indicated that viruses contribute little to the mortality of these cyanobacteria when the latter occur in colonies. Consequently, the results supported the hypothesis that colony formation can, at least temporarily, provide an efficient strategy for protection against virus-induced mortality. Finally, assuming that grazing has a negligible effect on colony-embedded cells in the Curonian Lagoon, we propose that most of the cyanobacterial biomass produced is lost from the pelagic food web by sedimentation

    Morphology and distribution of phage-like particles in a eutrophic boreal lagoon

    Get PDF
    In this paper we present the results of direct observations of the morphology and size of phage-like particles by means of transmission electron microscopy (TEM) as a function of their spatial distribution in the shallow highly productive Curonian Lagoon of the Baltic Sea. In total, 26 morphologically different forms of phage-like particles were found. Different trends of distribution in terms of abundance, size and shape of virus-like particles were demonstrated. The total abundance of viruses varied from 1.91×107 ml-1 to 5.06×107 ml-1. The virus to bacteria ratio (VBR) changed from 15.6 to 49 and was negatively associated with total bacterial numbers (r = -0.60; p < 0.05). The phages of family Myoviridae were the most diverse and were dominant at all stations

    Hepatito B viruso paviršiaus baltymų darinių sintezė mielėse s. cerevisiae

    No full text
    HBV surface proteins PreS1[13–59]-S, PreS1[20–59]-S, PreS1[30–59]-S, PreS1[40–59]-S, PreS1[50–59]-S, PreS1[90–119]-S were produced in S.cerevisiae and purified. Electron microscopy suggested spherical virus-like particle formation for all the proteins except PreS1[90–119]-S. The PreS1[90–119] sequence was demonstrated to decrease protein solubility. Proteins are suitable for Tupaia primary hepatocyte binding investigations, diagnostic products and vaccine candidate development

    Hepatito B viruso paviršiaus baltymų darinių sintezė mielėse s. cerevisiae

    No full text
    HBV surface proteins PreS1[13–59]-S, PreS1[20–59]-S, PreS1[30–59]-S, PreS1[40–59]-S, PreS1[50–59]-S, PreS1[90–119]-S were produced in S.cerevisiae and purified. Electron microscopy suggested spherical virus-like particle formation for all the proteins except PreS1[90–119]-S. The PreS1[90–119] sequence was demonstrated to decrease protein solubility. Proteins are suitable for Tupaia primary hepatocyte binding investigations, diagnostic products and vaccine candidate development

    Functionalization of α-synuclein fibrils

    No full text
    The propensity of peptides and proteins to form self-assembled structures has very promising applications in the development of novel nanomaterials. Under certain conditions, amyloid protein α-synuclein forms well-ordered structures – fibrils, which have proven to be valuable building blocks for bionanotechnological approaches. Herein we demonstrate the functionalization of fibrils formed by a mutant α-synuclein that contains an additional cysteine residue. The fibrils have been biotinylated via thiol groups and subsequently joined with neutravidin-conjugated gold nanoparticles. Atomic force microscopy and transmission electron microscopy confirmed the expected structure – nanoladders. The ability of fibrils (and of the additional components) to assemble into such complex structures offers new opportunities for fabricating novel hybrid materials or devices

    Absence of evidence for viral infection in colony-embedded cyanobacterial isolates from the Curonian Lagoon

    Get PDF
    The aim of the present study was to assess the frequency of viral infections in colony-embedded cells of the cyanobacteria Aphanizomenon flos-aquae and Microcystis aeruginosa collected from the brackish Curonian Lagoon. Natural and mitomycin C-treated A. flos-aquae and M. aeruginosa samples were examined for the presence of viruses and lysis by a combination of light-, epifluorescence and transmission electron microscopy techniques. Here we report a lack of evidence for virus infection, progeny formation and cell lysis in colony-embedded cells. of A. flos-aquae and M. aeruginosa. These results indicated that viruses contribute little to. the mortality of these cyanobacteria when the latter occur in colonies. Consequently, the results supported the hypothesis that colony formation can, at least temporarily, provide an efficient strategy for protection against virus-induced mortality. Finally, assuming that grazing has a negligible effect on colony-embedded cells in the Curonian Lagoon, we propose that most of the cyanobacterial biomass produced is lost from the pelagic food web by sedimentation
    corecore