124 research outputs found

    Experimental study of liquid to air membrane energy exchanger (LAMEE) performance by measuring its temperature fields

    Get PDF
    Many studies have already been conducted to assess liquid to air membrane energy exchanger (LAMEE) performance by numerical and experimental methods. However, the LAMEE temperature field is still an unknown area due to the operation difficult. In this study, an experimental method is adopted to investigate the performance of LAMEE by measuring its temperature fields. The effects of main parameters such as the solution temperature, solution concentration and air relative humidity, are investigated. The results show that the air relative humidity and solution temperature have negative influences on the LAMEE efficiency. It is found that the total effectiveness reduces 2.7% and 7.7% when the air relative humidity increases from 62% to 74%, and the solution temperature changes from 18℃ to 26℃, respectively. Increasing the solution concentration decreases the sensible effectiveness while enhancing the latent and total effectiveness. The total effectiveness increases 3.5% as the solution concentration increase from 30% by 39%. These results are useful to optimize the LAMEE in the future

    Query Complexity of Active Learning for Function Family With Nearly Orthogonal Basis

    Full text link
    Many machine learning algorithms require large numbers of labeled data to deliver state-of-the-art results. In applications such as medical diagnosis and fraud detection, though there is an abundance of unlabeled data, it is costly to label the data by experts, experiments, or simulations. Active learning algorithms aim to reduce the number of required labeled data points while preserving performance. For many convex optimization problems such as linear regression and pp-norm regression, there are theoretical bounds on the number of required labels to achieve a certain accuracy. We call this the query complexity of active learning. However, today's active learning algorithms require the underlying learned function to have an orthogonal basis. For example, when applying active learning to linear regression, the requirement is the target function is a linear composition of a set of orthogonal linear functions, and active learning can find the coefficients of these linear functions. We present a theoretical result to show that active learning does not need an orthogonal basis but rather only requires a nearly orthogonal basis. We provide the corresponding theoretical proofs for the function family of nearly orthogonal basis, and its applications associated with the algorithmically efficient active learning framework

    Influences of the mixed LiCl-CaCl 2 liquid desiccant solution on a membrane-based dehumidification system: parametric analysis and mixing ratio selection

    Get PDF
    The membrane-based liquid desiccant dehumidification system has high energy efficiency without the traditional liquid system carry-over problem. The performance of such a system strongly depends on solution's temperature and concentration, which have direct relationship to the solution surface vapour pressure. Compared with the pure liquid desiccant solution, the mixed liquid desiccant solution has lower surface vapour pressure, better system performance and lower material cost. In this paper, the performance of a flat-plate membrane-based liquid desiccant dehumidification system with the mixed solution (LiCl and CaCl2) is investigated through theoretical and experimental approaches. A mathematical model is established to predict the system performance, while the electrolyte non-random two-liquid (NRTL) method is applied to calculate the mixed solution properties. The influences of the solution mixing ratio, temperature Tsol and concentration Csol are evaluated, and it is found that the regeneration heat Qreg can be dramatically reduced by either applying a high concentration solution or increasing CaCl2 content in the mixed solution. Compared with the pure LiCl solution system, the mixed solution system COP can be improved up to 30.23% by increasing CaCl2 content for a 30% concentration solution. The optimum mixing ratio varies with the solution concentration. For the mixed LiCl-CaCl2 solution, the system highest COPs appear at the mixing ratios of 3:1, 2:1 and 1:1 for 20%, 30% and 40% concentrations respectively

    State-of-art in modelling methods of membrane-based liquid desiccant heat and mass exchanger: a comprehensive review

    Get PDF
    Air dehumidification is of vital importance in building air conditioning and production safety. Semi-permeable membrane module is a novel heat and mass exchanger, which separates the air and liquid desiccant to overcome desiccant droplet carry-over problem in traditional direct-contact systems. Recently, some research works have been carried out in mathematical modelling and experimental testing of membrane-based liquid desiccant dehumidification technology. Compared with the experimental testing, the mathematical modelling has advantages of significant time and cost reductions, practically unlimited level of detail, more profound understanding of physical mechanism and better investigation of critical situation without any risks. This paper presents a comprehensive review of various modelling methods for two types of membrane-based liquid desiccant modules: flat plate and hollow fiber

    Parametric analysis of a cross-flow membrane-based parallel-plate liquid desiccant dehumidification system: numerical and experimental data

    Get PDF
    Operating parameters of a membrane-based parallel-plate liquid desiccant dehumidification system are investigated in this paper. The liquid desiccant and air are in a cross-flow arrangement, and separated by semi-permeable membranes to avoid carry-over problem. A numerical model is developed to simulate the system performance, and validated by experimental and analytical results. Impacts of main operating parameters on the system performance (i.e. sensible, latent and total effectiveness) are evaluated, which include dimensionless parameters (i.e. solution to air mass flow rate ratio m^* and number of heat transfer units NTU), solution properties (i.e. concentration C_sol and temperature T_sol) and inlet air conditions (i.e. temperature T_(air,in) and relative humidity 〖RH〗_(air,in)). It is found that m^* and NTU are two of the most important parameters influencing the system effectiveness. Even though the system performance can be improved by m^*and NTU, its increasing gradient is limited when m^*and NTU exceed 1 and 4 respectively. Decreasing solution temperature does not make a great improvement to the system performance, however, increasing solution concentration is a good approach to enhance the latent effectiveness without influencing the sensible effectiveness. The system shows the broad adaptability in various weather conditions, and has the ability to provide relative stable state supply air

    Techno-economic assessment of the horizontal geothermal heat pump systems: a comprehensive review

    Get PDF
    Geothermal heat pump has been widely recognized as one of the promising technologies for building applications because of its high energy efficiency and low operating expense, however the high capital investment and installation costs discourage building owners to choose such a system. The horizontal geothermal heat pump system with reduced cost is a viable option that would be utilized widely, the aim of this paper is to catalogue and critique a range of effective approaches for the horizontal geothermal heat pump systems in different regions based on techno-economic assessment data. A ground heat exchanger is a vital component of the horizontal geothermal heat pump. The state-of-the-art analytical and numerical models of the linear-loop, slinky-coil and spiral-coil ground heat exchangers are generalized, in addition to their advantages and disadvantages. A large number of economic evaluation methods for analysing the financial performance of the horizontal geothermal heat pump system are presented. At the end, the standpoints, recommendations and potential future study on the horizontal geothermal heat pump system are deliberated

    Performance evaluation of a membrane-based flat-plate heat and mass exchanger used for liquid desiccant regeneration

    Get PDF
    Liquid desiccant dehumidification system has gained much progress recently for its considerable energy saving potential without liquid water condensation. Within the system, regeneration is of great importance since diluted desiccant solution after dehumidification needs to be re-concentrated. The operational characteristics of a membrane-based flat-plate heat and mass exchanger used for liquid desiccant regeneration are investigated in this study. The liquid desiccant and air are in a cross-flow arrangement, and separated by semi-permeable membranes to avoid carry-over problem. The regeneration performance is examined by numerical simulation and experimental test. Solution side effectiveness, temperature decrease rate (TDR) and moisture flux rate (MFR) are applied to evaluate heat and mass transfer in the regenerator. Effects of main operating parameters are assessed, which include dimensionless parameters (i.e. number of heat transfer units NTU and solution to air mass flow rate ratio m∗), solution inlet properties (i.e. temperature T sol,in and concentration C sol,in) and air inlet conditions (i.e. temperature T air,in and humidity ratio air,in). It is found that m∗ and NTU are two of the most important parameters and their effects on the regeneration performance are interacted with each other. There is hardly benefit to the performance improvement by increasing NTU at low m∗ or increasing m∗ at low NTU. Even though the regeneration performance can be improved by increasing m∗ and NTU, its improvement gradient is limited when m∗ and NTU exceed 2 and 4 respectively. It is also found that increasing olution inlet temperature is an effective approach to enhance the regeneration performance, while air inlet temperature and humidity ratio have negligible effects on it

    Large spin Hall conductivity and excellent hydrogen evolution reaction activity in unconventional PtTe1.75 monolayer

    Full text link
    Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2×\times2) patterned PtTe2_2 monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe1.75_{1.75}) hosts large spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventional nature relies on the A1@1bA1@1b band representation (BR) of the highest valence band without SOC. The large SHC comes from the Rashba spin-orbit coupling (SOC) in the noncentrosymmetric structure induced by the Te vacancy. Even though it has a metallic SOC band structure, the Z2\mathbb Z_2 invariant is well defined due to the existence of the direct band gap and is computed to be nontrivial. The calculated SHC is as large as 1.25×103e(Ω cm)1\times 10^3 \frac{\hbar}{e} (\Omega~cm)^{-1} at the Fermi level (EFE_F). By tuning the chemical potential from EF0.3E_F-0.3 to EF+0.3E_F+0.3 eV, it varies rapidly and monotonically from 1.2×103-1.2\times 10^3 to 3.1×103e(Ω cm)1\times 10^3 \frac{\hbar}{e} (\Omega~cm)^{-1}. In addition, we also find the Te vacancy in the patterned monolayer can induce excellent HER activity. Our results not only offer a new idea to search 2D materials with large SHC, i.e., by introducing inversion-symmetry breaking vacancies in large SOC systems, but also provide a feasible system with tunable SHC (by applying gate voltage) and excellent HER activity

    Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system

    Get PDF
    A complete membrane-based liquid desiccant dehumidification system is investigated under the steady operating condition, which mainly consists of a dehumidifier, a regenerator, three heat exchangers, a cold and a hot water supply units. A finite difference mathematical model is developed for the complete system to investigate the system dehumidification performance and energy requirement, and validated by experimental data. The dehumidification performance is evaluated by the system sensible and latent effectiveness and moisture flux rate, while its energy performance is assessed by the total cooling capacity and coefficient of performance. It is found that the number of heat transfer units in the dehumidifier side and solution to air mass flow rate ratio have the most considerable impact on the system performance, while the number of heat transfer units in the regenerator side and solution inlet concentration in the dehumidifier have comparatively weak influences. The system sensible and latent effectiveness can be improved by increasing the dehumidifier side number of heat transfer units before reaching its critical value of 6. However, the amount of moisture being absorbed, total cooling capacity and coefficient of performance decrease with the dehumidifier side number of heat transfer units at the low air flow rate. The critical value of solution to air mass flow rate ratio varies with number of heat transfer units, and it is preferable to keep the flow rate ratio at or below its critical value as further increasing solution flow rate would reduce the system coefficient of performance
    corecore