227 research outputs found

    Risk Identification of Sudden Water Pollution on Fuzzy Fault Tree in Beibu-Gulf Economic Zone

    Get PDF
    AbstractSudden water pollution incident has the characteristics of instantaneity and uncertainty. Based on the characteristics, fuzzy fault tree analysis method was used to identify the potential risks of water pollution in Beibu-Gulf economic zone, and it also combined with the collected data and analysis results. The research results showed that the abnormal discharge of sewage was the main risk factor of the economic zone; the probability value of water pollution potential risk in this study area ranged from 4.6 percent to17.7 percent,which considered the random uncertainty and fuzzy uncertainty of the causes. This research could be considered as an instruction for future risk management, and it will play a great role in the healthy development of ecological environment

    Cellular Localization of Aquaporin-1 in the Human and Mouse Trigeminal Systems

    Get PDF
    Previous studies reported that a subpopulation of mouse and rat trigeminal neurons express water channel aquaporin-1 (AQP1). In this study we make a comparative investigation of AQP1 localization in the human and mouse trigeminal systems. Immunohistochemistry and immunofluorescence results showed that AQP1 was localized to the cytoplasm and cell membrane of some medium and small-sized trigeminal neurons. Additionally, AQP1 was found in numerous peripheral trigeminal axons of humans and mice. In the central trigeminal root and brain stem, AQP1 was specifically expressed in astrocytes of humans, but was restricted to nerve fibers within the central trigeminal root and spinal trigeminal tract and nucleus in mice. Furthermore, AQP1 positive nerve fibers were present in the mucosal and submucosal layers of human and mouse oral tissues, but not in the muscular and subcutaneous layers. Fluorogold retrograde tracing demonstrated that AQP1 positive trigeminal neurons innervate the mucosa but not skin of cheek. These results reveal there are similarities and differences in the cellular localization of AQP1 between the human and mouse trigeminal systems. Selective expression of AQP1 in the trigeminal neurons innervating the oral mucosa indicates an involvement of AQP1 in oral sensory transduction

    Isolation Housing Exacerbates Alzheimer\u27s Disease-Like Pathophysiology in Aged APP/PS1 Mice

    Get PDF
    BACKGROUND: Alzheimer\u27s disease is a neurodegenerative disease characterized by gradual declines in social, cognitive, and emotional functions, leading to a loss of expected social behavior. Social isolation has been shown to have adverse effects on individual development and growth as well as health and aging. Previous experiments have shown that social isolation causes an early onset of Alzheimer\u27s disease-like phenotypes in young APP695/PS1-dE9 transgenic mice. However, the interactions between social isolation and Alzheimer\u27s disease still remain unknown. METHODS: Seventeen-month-old male APP695/PS1-dE9 transgenic mice were either singly housed or continued group housing for 3 months. Then, Alzheimer\u27s disease-like pathophysiological changes were evaluated by using behavioral, biochemical, and pathological analyses. RESULTS: Isolation housing further promoted cognitive dysfunction and Aβ plaque accumulation in the hippocampus of aged APP695/PS1-dE9 transgenic mice, associated with increased γ-secretase and decreased neprilysin expression. Furthermore, exacerbated hippocampal atrophy, synapse and myelin associated protein loss, and glial neuroinflammatory reactions were observed in the hippocampus of isolated aged APP695/PS1-dE9 transgenic mice. CONCLUSIONS: The results demonstrate that social isolation exacerbates Alzheimer\u27s disease-like pathophysiology in aged APP695/PS1-dE9 transgenic mice, highlighting the potential role of group life for delaying or counteracting the Alzheimer\u27s disease process

    Relationship of Agronomic Practices to Soil Nitrogen Dynamics

    Get PDF
    Soil nitrogen (N) dynamics are a major concern of soil nutrient status and its supply for crop uptake and growth. They are a central focus of agroecosystems. Agronomic practices play a central role in regulating soil N dynamics; the methodologies for investigating soil N mineralization are diverse, but debatable. This chapter discusses the pros and cons of different methods for measuring soil N mineralization, including laboratory, in-situ, and modeling procedures. This chapter illustrates the influence of agronomic practices on root architecture that potentially affects crop nutrient uptake. The relationship between agronomic practices and soil N dynamics were fully discussed, which can substantially inform soil fertility and crop nutrition management

    Substrate Temperature Effect on the Microstructure and Properties of (Si, Al)/a-C:H Films Prepared through Magnetron Sputtering Deposition

    Get PDF
    Hydrogenated amorphous carbon films codoped with Si and Al ((Si, Al)/a-C:H) were deposited through radio frequency (RF, 13.56 MHz) magnetron sputtering on Si (100) substrate at different temperatures. The composition and structure of the films were investigated by means of X-ray photoelectron spectroscopy (XPS), TEM, and Raman spectra, respectively. The substrate temperature effect on microstructure and mechanical and tribological properties of the films was studied. A structural transition of the films from nanoparticle containing to fullerene-like was observed. Correspondingly, the mechanical properties of the films also had obvious transition. The tribological results in ambient air showed that high substrate temperature (>573 K) was disadvantage of wear resistance of the films albeit in favor of formation of ordering carbon clusters. Particularly, the film deposited at temperature of 423 K had an ultralow friction coefficient of about 0.01 and high wear resistance

    Deletion of Aquaporin-4 in APP/PS1 Mice Exacerbates Brain Aβ Accumulation and Memory Deficits

    Get PDF
    BACKGROUND: Preventing or reducing amyloid-beta (Aβ) accumulation in the brain is an important therapeutic strategy for Alzheimer\u27s disease (AD). Recent studies showed that the water channel aquaporin-4 (AQP4) mediates soluble Aβ clearance from the brain parenchyma along the paravascular pathway. However the direct evidence for roles of AQP4 in the pathophysiology of AD remains absent. RESULTS: Here, we reported that the deletion of AQP4 exacerbated cognitive deficits of 12-moth old APP/PS1 mice, with increases in Aβ accumulation, cerebral amyloid angiopathy and loss of synaptic protein and brain-derived neurotrophic factor in the hippocampus and cortex. Furthermore, AQP4 deficiency increased atrophy of astrocytes with significant decreases in interleukin-1 beta and nonsignificant decreases in interleukin-6 and tumor necrosis factor-alpha in hippocampal and cerebral samples. CONCLUSIONS: These results suggest that AQP4 attenuates Aβ pathogenesis despite its potentially inflammatory side-effects, thus serving as a promising target for treating AD
    corecore