107 research outputs found

    Perioperative Antiviral Treatment Facilitate the Postoperative Recovery for Patients with HBV Related to Hepatocellular Carcinoma

    Get PDF
    Objective: This study aimed to determine whether perioperative antiviral treatment is facilitate for patients with hepatitis B (HBV)-related hepatocellular carcinoma (HCC) and Child-Pugh grade A cirrhosis in perioperative recovery of liver function and HBV activation. Methods: The study included 115 patients with HBV-related HCC and Child-Pugh grade A cirrhosis who underwent resection. Patients were prospectively assigned to a preoperative antiviral treatment group (n = 51) or postoperative antiviral treatment group (n = 52); twelve patients who had not received antiviral treatment before and after surgery were designated a non-treatment group (n = 12). HBV reactivation during a month after the operation was defined as a HBV DNA value tenfold over preoperative values. Postoperative liver dysfunction was defined as prothrombin activity <50% and serum bilirubin >50 mmol/L on postoperative day 5. Results: Postoperatively, liver dysfunction was present in 1 of 51 (1.96%) patients who received preoperative antiviral therapy, 1 of 52 (1.92%) who received postoperative therapy, and 3 of 12 (25%) who received no antiviral therapy. HBV reactivation postoperatively occurred at similar rates. Conclusions: Preoperative and postoperative antiviral treatment of patients with Child-Pugh grade A cirrhosis and high levels of HBV DNA undergoing hepatic resection for HCC are both facilitate in preventing perioperative liver dysfunction and reactivation of HBV. Thus, in this population with high levels of HBV DNA, perioperative antiviral treatment is important

    General time-reversal equivariant neural network potential for magnetic materials

    Full text link
    This study introduces time-reversal E(3)-equivariant neural network and SpinGNN++ framework for constructing a comprehensive interatomic potential for magnetic systems, encompassing spin-orbit coupling and noncollinear magnetic moments. SpinGNN++ integrates multitask spin equivariant neural network with explicit spin-lattice terms, including Heisenberg, Dzyaloshinskii-Moriya, Kitaev, single-ion anisotropy, and biquadratic interactions, and employs time-reversal equivariant neural network to learn high-order spin-lattice interactions using time-reversal E(3)-equivariant convolutions. To validate SpinGNN++, a complex magnetic model dataset is introduced as a benchmark and employed to demonstrate its capabilities. SpinGNN++ provides accurate descriptions of the complex spin-lattice coupling in monolayer CrI3_3 and CrTe2_2, achieving sub-meV errors. Importantly, it facilitates large-scale parallel spin-lattice dynamics, thereby enabling the exploration of associated properties, including the magnetic ground state and phase transition. Remarkably, SpinGNN++ identifies a new ferrimagnetic state as the ground magnetic state for monolayer CrTe2, thereby enriching its phase diagram and providing deeper insights into the distinct magnetic signals observed in various experiments.Comment: 27 pages,6 figures and 3 table

    Electrically driven organic laser using integrated OLED pumping

    Get PDF
    Funding: Authors thank the Engineering and Physical Sciences Research Council of the UK for the financial support from grants EP/R035164/1, EP/R03480X/1 and EP/L017008/1. J.G. thanks the China Scholarship Council (grant no. 201806100005) for financial support.Organic semiconductors are carbon-based materials that combine optoelectronic properties with simple fabrication and the scope for tuning by changing their chemical structure1,2,3. They have been successfully used to make organic light-emitting diodes2,4,5 (OLEDs, now widely found in mobile phone displays and televisions), solar cells1, transistors6 and sensors7. However, making electrically driven organic semiconductor lasers is very challenging8,9. It is difficult because organic semiconductors typically support only low current densities, suffer substantial absorption from injected charges and triplets, and have additional losses due to contacts10,11. In short, injecting charges into the gain medium leads to intolerable losses. Here we take an alternative approach in which charge injection and lasing are spatially separated, thereby greatly reducing losses. We achieve this by developing an integrated device structure that efficiently couples an OLED, with exceptionally high internal-light generation, with a polymer distributed feedback laser. Under the electrical driving of the integrated structure, we observe a threshold in light output versus drive current, with a narrow emission spectrum and the formation of a beam above the threshold. These observations confirm lasing. Our results provide an organic electronic device that has not been previously demonstrated, and show that indirect electrical pumping by an OLED is a very effective way of realizing an electrically driven organic semiconductor laser. This provides an approach to visible lasers that could see applications in spectroscopy, metrology and sensing.Publisher PDFPeer reviewe

    Tetra-donor pyrazine based thermally activated delayed fluorescence emitters for electroluminescence and amplified spontaneous emission

    Get PDF
    Funding: D.C. thanks the support from the China Postdoctoral Science Foundation (Grant No. 2022TQ0227) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20230508). The Authors thank EPSRC for support (EP/W007517/1, EP/W015137/1, EP/X018067/1, EP/P010482/1). A.J.G. thanks the Leverhulme Trust for an Early Career Fellowship (ECF-2022-445). J.G. thanks the Engineering Physical Sciences Research Council (EPSRC Reference: EP/W017091/1). X.H.Z. acknowledges support from the National Natural Science Foundation China (Grant Nos. 52130304, 51821002), the Suzhou Key Laboratory of Functional Nano & Soft Materials, the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project.Thermally activated delayed fluorescence (TADF) materials are expected to address triplet-related losses in electrically driven organic lasers, as the electrically generated triplets in the materials can be converted to radiative singlets through reverse intersystem crossing (RISC). This offers a way to bypass triplet absorption and annihilation in organic semiconductor lasers (OSLs). In this work, two versatile TADF emitters 4tCzPz and 4αCbPz for application in organic light-emitting diodes (OLEDs) and OSLs are presented. Both emitters possess moderately high singlet-triplet energy gap, ΔEST (≈0.30 eV) and show high photoluminescence quantum yields, ΦPL, in solution and solid-state and prominent stimulated emission features in solution. Films of 4tCzPz and 4αCbPz doped in mCBP show an amplified spontaneous emission (ASE) threshold of 41.0 and 44.9 µJ/cm2, respectively. The OLEDs with 4tCzPz and 4αCbPz emit with peak wavelengths of 492 and 475 nm, respectively, and show corresponding maximum external quantum efficiencies, EQEmax, of 24.6 and 21.3%. The research shows that D-A TADF materials hold significant potential not only as emitters for OLEDs but also in OSLs.Peer reviewe

    Diversity of endosymbionts in camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), estimated by 16S rRNA analysis and their biological implications

    Get PDF
    Camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), is a major pest in tea, which poses a serious threat to tea production. Similar to many insects, various bacterial symbioses inside A. camelliae may participate in the reproduction, metabolism, and detoxification of the host. However, few reports included research on the microbial composition and influence on A. camelliae growth. We first applied high-throughput sequencing of the V4 region in the 16S rRNA of symbiotic bacteria to study its component and effect on the biological trait of A. camelliae by comparing it with the antibiotic treatment group. The population parameters, survival rate, and fecundity rate of A. camelliae were also analyzed using the age–stage two-sex life table. Our results demonstrated that phylum Proteobacteria (higher than 96.15%) dominated the whole life cycle of A. camelliae. It unveiled the presence of Candidatus Portiera (primary endosymbiont) (67.15–73.33%), Arsenophonus (5.58–22.89%), Wolbachia (4.53–11.58%), Rickettsia (0.75–2.59%), and Pseudomonas (0.99–1.88%) genus. Antibiotic treatment caused a significant decrease in the endosymbiont, which negatively affected the host's biological properties and life process. For example, 1.5% rifampicin treatment caused a longer preadult stage in the offspring generation (55.92 d) compared to the control (49.75d) and a lower survival rate (0.36) than the control (0.60). The decreased intrinsic rate of increase (r), net reproductive rate (R0), and prolonged mean generation time (T) were signs of all disadvantageous effects associated with symbiotic reduction. Our findings confirmed the composition and richness of symbiotic bacteria in larva and adult of A. camelliae by an Illumina NovaSeq 6000 analysis and their influence on the development of the host by demographic research. Together, the results suggested that symbiotic bacteria play an important role in manipulating the biological development of their hosts, which might help us for developing new pest control agents and technologies for better management of A. camelliae

    Excited-state modulation in donor-substituted multiresonant thermally activated delayed fluorescence emitters

    Get PDF
    S.W. thanks the China Scholarship Council (201906250199). EZ-C and IDWS acknowledge support from EPSRC (EP/L017008, EP/P010482/1). We are also grateful for financial support from the University of St Andrews Restarting Research Funding Scheme (SARRF) which is funded through the Scottish Funding Council grant reference SFC/AN/08/020. EZ-C is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). We would also like to thank the Leverhulme Trust (RPG-2016-047) for financial support. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 838885 (NarrowbandSSL). S.M.S. acknowledges support from the Marie Skłodowska-Curie Individual Fellowship. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. Y.O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant n° F.4534.21 (MIS-IMAGINE). D.B. is a FNRS Research Director.Strategies to tune the emission of multiresonant thermally activated delayed fluorescence (MR-TADF) emitters remain rare. Here, we explore the effect of donor substitution about a MR-TADF core on the emission energy and the nature of the excited state. We decorate different numbers and types of electron-donors about a central MR-TADF core, DiKTa. Depending on the identity and number of donor groups, the excited state either remains short-range charge transfer (SRCT) and thus characteristic of an MR-TADF emitter or becomes a long-range charge transfer (LRCT) that is typically observed in donor–acceptor TADF emitters. The impact is that in three examples that emit from a SRCT state, Cz-DiKTa, Cz-Ph-DiKTa, and 3Cz-DiKTa, the emission remains narrow, while in four examples that emit via a LRCT state, TMCz-DiKTa, DMAC-DiKTa, 3TMCz-DiKTa, and 3DMAC-DiKTa, the emission broadens significantly. Through this strategy, the organic light-emitting diodes fabricated with the three MR-TADF emitters show maximum electroluminescence emission wavelengths, λEL, of 511, 492, and 547 nm with moderate full width at half-maxima (fwhm) of 62, 61, and 54 nm, respectively. Importantly, each of these devices show high maximum external quantum efficiencies (EQEmax) of 24.4, 23.0, and 24.4%, which are among the highest reported with ketone-based MR-TADF emitters. OLEDs with D–A type emitters, DMAC-DiKTa and TMCz-DiKTa, also show high efficiencies, with EQEmax of 23.8 and 20.2%, but accompanied by broad emission at λEL of 549 and 527 nm, respectively. Notably, the DMAC-DiKTa-based OLED shows very small efficiency roll-off, and its EQE remains 18.5% at 1000 cd m–2. Therefore, this work demonstrates that manipulating the nature and numbers of donor groups decorating a central MR-TADF core is a promising strategy for both red-shifting the emission and improving the performance of the OLEDs.Publisher PDFPeer reviewe

    Highly efficient green and red narrowband emissive organic light-emitting diodes employing multi-resonant thermally activated delayed fluorescence emitters

    Get PDF
    Funding: S. W. thanks the China Scholarship Council (201906250199). A. K. G. is grateful to the Royal Society for Newton International Fellowship NF171163. EZ-C and IDWS acknowledge support from EPSRC (EP/L017008, EP/P010482/1). We are also grateful for financial support from the University of St Andrews Restarting Research Funding Scheme (SARRF) which is funded through the Scottish Funding Council grant reference SFC/AN/08/020. EZ-C is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). We would also like to thank the Leverhulme Trust (RPG-2016-047) for financial support.Herein, we demonstrate how judicious selection of donor decorating a central multi-resonant thermally activated delayed fluorescence (MR-TADF) core based on DiKTa can lead to very high-performance OLEDs. Decorating the DiKTa core with triphenylamine (TPA) and diphenylamine (DPA), 3TPA-DiKTa and 3DPA-DiKTa exhibit bright, narrowband green and red emission in doped films, respectively. The OLEDs based on these emitters showed record-high performance with maximum external quantum efficiencies (EQEmax) for this family of emitters, with a EQEmax of 30.8% for 3TPA-DiKTa at λEL of 551 nm and 16.7% for 3DPA-DiKTa at λEL of 613 nm. The efficiency roll-off in the OLEDs was improved significantly by using 4CzIPN as an assistant dopant in hyperfluorescence (HF) devices. The outstanding device performance has been attributed to preferential horizontal orientation of the transition dipole moments of 3TPA-DiKTa and 3DPA-DiKTa.Publisher PDFPeer reviewe

    Review of molten carbonate-based direct carbon fuel cells

    Get PDF
    Abstract Direct carbon fuel cell (DCFC) is a promising technology with high energy efficiency and abundant fuel. To date, a variety of DCFC configurations have been investigated, with molten hydroxide, molten carbonate or oxides being used as the electrolyte. Recently, there has been particular interest in DCFC with molten carbonate involved. The molten carbonate is either an electrolyte or a catalyst in different cell structures. In this review, we consider carbonate as the clue to discuss the function of carbonate in DCFCs, and start the paper by outlining the developments in terms of molten carbonate (MC)-based DCFC and its electrochemical oxidation processes. Thereafter, the composite electrolyte merging solid carbonate and mixed ionic–electronic conductors (MIEC) are discussed. Hybrid DCFC (HDCFCs ) combining molten carbonate and solid oxide fuel cell (SOFC) are also touched on. The primary function of carbonate (i.e., facilitating ion transfer and expanding the triple-phase boundaries) in these systems, is then discussed in detail. Finally, some issues are identified and a future outlook outlined, including a corrosion attack of cell components, reactions using inorganic salt from fuel ash, and wetting with carbon fuels
    • …
    corecore